A D-Band Wideband Low-Noise Amplifier Adopting Pseudo-Simultaneous Noise and Input Matched Dual-Peak G<sub>max</sub>-Core

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 4
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee, Hokeunko
dc.contributor.authorYun, Byeonghunko
dc.contributor.authorJeon, Hyoryeongko
dc.contributor.authorKeum, Wooyongko
dc.contributor.authorLee, Sang-Gugko
dc.contributor.authorChoi, Kyung-Sikko
dc.date.accessioned2024-09-05T06:00:17Z-
dc.date.available2024-09-05T06:00:17Z-
dc.date.created2023-11-14-
dc.date.issued2024-05-
dc.identifier.citationIEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, v.72, no.5-
dc.identifier.issn0018-9480-
dc.identifier.urihttp://hdl.handle.net/10203/322640-
dc.description.abstractThis article presents a high-gain and wide band D-band low-noise amplifier (LNA) adopting a proposed wideband pseudo-simultaneous noise-and input-matched (p-SNIM) dual-peak (DP) maximum achievable gain (G(ma)x)-core. For a transmission line (TL)-based DP G(max)-core, the p-SNIM condition is satisfied by adjusting the stability factor (K-f) without requiring additional components. Comprehensive analysis of the DP Gmax-core is performed to investigate the unique behaviors of input admittance for simultaneous conjugate matching (Y-in(&amp; lowast;)) and optimal admittance for minimum noise figure (NF) (Y-nopt) as a function of K-f, which is fully exploited to implement the wideband p-SNIM DP G(max)-core. Moreover, we present the design procedure of a proposed dual-frequency inter-stage matching network that enables the wideband multistage LNA implementation. Implemented in a 40-nm CMOS technology, the D-band three-stage LNA achieves a peak power gain of 16.3 dB, a 3-dB bandwidth of 24 GHz, and a minimum NF of 4.9 dB while dissipating only 16.1 mW.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleA D-Band Wideband Low-Noise Amplifier Adopting Pseudo-Simultaneous Noise and Input Matched Dual-Peak G&lt;sub&gt;max&lt;/sub&gt;-Core-
dc.typeArticle-
dc.identifier.wosid001090741500003-
dc.identifier.scopusid2-s2.0-85174814844-
dc.type.rimsART-
dc.citation.volume72-
dc.citation.issue5-
dc.citation.publicationnameIEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES-
dc.identifier.doi10.1109/TMTT.2023.3322838-
dc.contributor.localauthorLee, Sang-Gug-
dc.contributor.nonIdAuthorKeum, Wooyong-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle; Early Access-
dc.subject.keywordAuthorCMOS-
dc.subject.keywordAuthordual-peak (DP) G(max)-core-
dc.subject.keywordAuthorG(max)-
dc.subject.keywordAuthorlow-noise amplifier (LNA)-
dc.subject.keywordAuthornoise matching-
dc.subject.keywordAuthorAmplifier-
dc.subject.keywordAuthorsub-THz-
dc.subject.keywordPlusHIGH-GAIN-
dc.subject.keywordPlusCMOS AMPLIFIER-
dc.subject.keywordPlus65-NM CMOS-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusFUTURE-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0