2D Particle Filter Accelerator for Mobile Robot Indoor Localization and Pose Estimation

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 3
  • Download : 0
Particle filtering is a reliable Monte Carlo algorithm for estimating the state of a system in modeling non-linear, non-gaussian elements for estimation and tracking applications in various fields, including robotics, navigation, and computer vision. However, particle filtering can be computationally expensive, particularly in high-dimensional state spaces, and can be a bottleneck for real-time applications due to high memory consumption. This paper proposes a particle filter accelerator that employs a cellular automata-based pseudo-random number generator and an improved systematic resampler based on the Vose Alias method. The particles are distributed across several sub-filters, performing concurrent resampling and importance weights computations. The proposed accelerator leveraged the inherent parallelism and pipelining stages of FPGAs to perform the resampling stage in a parallel fashion, significantly enhancing the particle convergence time. The proposed accelerator deployed on the Zedboard (ZC7020) system-on-chip achieves a low execution time of approximately 4.63 $\mu \text{s}$ , 21.3 % speedup, and 3.1 % area reduction compared to the recent particle filter accelerator. The proposed design also demonstrates modularity, achieved through multiple parallel hardware subfilters that provide high throughput for real-time sensor data processing. Furthermore, the proposed accelerator performs a high sampling frequency of 216kHz, making it suitable for high throughput and real-time applications.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2024
Language
English
Article Type
Article
Citation

IEEE ACCESS, v.12, pp.18473 - 18487

ISSN
2169-3536
DOI
10.1109/ACCESS.2024.3360883
URI
http://hdl.handle.net/10203/322436
Appears in Collection
CS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0