Unwinding mechanism of SARS-CoV helicase (nsp13) in the presence of Ca2+, elucidated by biochemical and single-molecular studies

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 17
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorYu, Jeongminko
dc.contributor.authorIm, Hyeryeonko
dc.contributor.authorLee, Gwangrogko
dc.date.accessioned2024-08-07T20:00:06Z-
dc.date.available2024-08-07T20:00:06Z-
dc.date.created2024-08-08-
dc.date.created2024-08-08-
dc.date.created2024-08-08-
dc.date.issued2023-08-
dc.identifier.citationBIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, v.668, pp.35 - 41-
dc.identifier.issn0006-291X-
dc.identifier.urihttp://hdl.handle.net/10203/321756-
dc.description.abstractThe recent outbreak of COVID-19 has created a serious health crisis with fatFal infectious viral diseases, such as Severe Acute Respiratory Syndrome (SARS). The nsp13, a helicase of coronaviruses is an essential element for viral replication that unwinds secondary structures of DNA and RNA, and is thus considered a major therapeutic target for treatment. The replication of coronaviruses and other retroviruses occurs in the cytoplasm of infected cells, in association with viral replication organelles, called virus-induced cytosolic double-membrane vesicles (DMVs). In addition, an increase in cytosolic Ca2+ concentration accelerates viral replication. However, the molecular mechanism of nsp13 in the presence of Ca2+ is not well understood. In this study, we applied biochemical methods and single-molecule techniques to demonstrate how nsp13 achieves its unwinding activity while performing ATP hydrolysis in the presence of Ca2+. Our study found that nsp13 could efficiently unwind double stranded (ds) DNA under physio-logical concentration of Ca2+ of cytosolic DMVs. These findings provide new insights into the properties of nsp13 in the range of calcium in cytosolic DMVs.-
dc.languageEnglish-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.titleUnwinding mechanism of SARS-CoV helicase (nsp13) in the presence of Ca2+, elucidated by biochemical and single-molecular studies-
dc.typeArticle-
dc.identifier.wosid001009252100001-
dc.identifier.scopusid2-s2.0-85159827555-
dc.type.rimsART-
dc.citation.volume668-
dc.citation.beginningpage35-
dc.citation.endingpage41-
dc.citation.publicationnameBIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS-
dc.identifier.doi10.1016/j.bbrc.2023.05.062-
dc.contributor.localauthorLee, Gwangrog-
dc.contributor.nonIdAuthorYu, Jeongmin-
dc.contributor.nonIdAuthorIm, Hyeryeon-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthornsp13-
dc.subject.keywordAuthorHelicase-
dc.subject.keywordAuthorUnwinding activity-
dc.subject.keywordAuthorDouble-membrane vesicles-
dc.subject.keywordAuthorCalcium-
dc.subject.keywordAuthorSingle-molecule-
dc.subject.keywordPlusCORONAVIRUS-
dc.subject.keywordPlusTRANSLOCATION-
dc.subject.keywordPlusDNA-
Appears in Collection
BS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0