Microengineered human blood-brain barrier platform for understanding nanoparticle transport mechanisms

Cited 226 time in webofscience Cited 0 time in scopus
  • Hit : 4
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorAhn, Song Ihko
dc.contributor.authorSei, Yoshitaka J.ko
dc.contributor.authorPark, Hyun-Jiko
dc.contributor.authorKim, Jinhwanko
dc.contributor.authorRyu, Yujungko
dc.contributor.authorChoi, Jeongmoon J.ko
dc.contributor.authorSung, Hak-Joonko
dc.contributor.authorMacDonald, Tobey J.ko
dc.contributor.authorLevey, Allan, Iko
dc.contributor.authorKim, YongTaeko
dc.date.accessioned2024-08-06T09:00:14Z-
dc.date.available2024-08-06T09:00:14Z-
dc.date.created2024-08-06-
dc.date.issued2020-01-
dc.identifier.citationNATURE COMMUNICATIONS, v.11, no.1-
dc.identifier.urihttp://hdl.handle.net/10203/321744-
dc.description.abstractChallenges in drug development of neurological diseases remain mainly ascribed to the blood-brain barrier (BBB). Despite the valuable contribution of animal models to drug discovery, it remains difficult to conduct mechanistic studies on the barrier function and interactions with drugs at molecular and cellular levels. Here we present a microphysiological platform that recapitulates the key structure and function of the human BBB and enables 3D mapping of nanoparticle distributions in the vascular and perivascular regions. We demonstrate on-chip mimicry of the BBB structure and function by cellular interactions, key gene expressions, low permeability, and 3D astrocytic network with reduced reactive gliosis and polarized aquaporin-4 (AQP4) distribution. Moreover, our model precisely captures 3D nanoparticle distributions at cellular levels and demonstrates the distinct cellular uptakes and BBB penetrations through receptor-mediated transcytosis. Our BBB platform may present a complementary in vitro model to animal models for prescreening drug candidates for the treatment of neurological diseases.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.titleMicroengineered human blood-brain barrier platform for understanding nanoparticle transport mechanisms-
dc.typeArticle-
dc.identifier.wosid000551458600004-
dc.identifier.scopusid2-s2.0-85077676561-
dc.type.rimsART-
dc.citation.volume11-
dc.citation.issue1-
dc.citation.publicationnameNATURE COMMUNICATIONS-
dc.identifier.doi10.1038/s41467-019-13896-7-
dc.contributor.localauthorAhn, Song Ih-
dc.contributor.nonIdAuthorSei, Yoshitaka J.-
dc.contributor.nonIdAuthorPark, Hyun-Ji-
dc.contributor.nonIdAuthorKim, Jinhwan-
dc.contributor.nonIdAuthorRyu, Yujung-
dc.contributor.nonIdAuthorChoi, Jeongmoon J.-
dc.contributor.nonIdAuthorSung, Hak-Joon-
dc.contributor.nonIdAuthorMacDonald, Tobey J.-
dc.contributor.nonIdAuthorLevey, Allan, I-
dc.contributor.nonIdAuthorKim, YongTae-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusELECTRICAL-RESISTANCE-
dc.subject.keywordPlusAQUAPORIN-4-
dc.subject.keywordPlusASTROCYTES-
dc.subject.keywordPlusPERICYTES-
dc.subject.keywordPlusIN-VITRO MODEL-
dc.subject.keywordPlusENDOTHELIAL-CELLS-
dc.subject.keywordPlusNANOTHERAPEUTICS-
dc.subject.keywordPlusDISCOVERY-
dc.subject.keywordPlusSYSTEMS-
dc.subject.keywordPlusCHIPS-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 226 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0