Performance analysis of pairs trading using firm characteristics via clustering methods in the Korean stock market한국 주식 시장에서 기업 특성과 군집화 방법을 통한 페어 트레이딩 전략 성과 분석

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 11
  • Download : 0
DC FieldValueLanguage
dc.contributor.advisor김아현-
dc.contributor.authorPark, Min-Woo-
dc.contributor.author박민우-
dc.date.accessioned2024-07-26T19:31:08Z-
dc.date.available2024-07-26T19:31:08Z-
dc.date.issued2023-
dc.identifier.urihttp://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=1047718&flag=dissertationen_US
dc.identifier.urihttp://hdl.handle.net/10203/321017-
dc.description학위논문(석사) - 한국과학기술원 : 금융공학프로그램, 2023.8,[iii, 39 p. :]-
dc.description.abstractThis paper analyzes the performance of pairs trading constructed via three unsupervised learnings in the Korean market. In addition to traditional pairs trading, it incorporates firm characteristics to identify more robust pairs. The result reveals that two of the three clustering algorithms tend to outperform the benchmark KOSPI even after accounting for the risk. Long-short equally weighted portfolios via k-means clustering performs best in the Korean market with an annualized mean return of 34% and Sharpe Ratio of 0.667. Moreover, utilizing firm characteristics enhance the performance of the strategy by improving return and reducing volatility at the same time. However, in the robustness check, it reveals some limitations such as profitability differs variously according to the selection of hyperparameters.-
dc.languageeng-
dc.publisher한국과학기술원-
dc.subject페어 트레이딩▼a클러스터링▼a비지도학습▼aK-means 군집▼aDBSCAN▼a병합 군집-
dc.subjectPairs trading▼aClustering▼aUnsupervised learning▼aK-means clustering▼aDBSCAN▼aAgglomerative clustering-
dc.titlePerformance analysis of pairs trading using firm characteristics via clustering methods in the Korean stock market-
dc.title.alternative한국 주식 시장에서 기업 특성과 군집화 방법을 통한 페어 트레이딩 전략 성과 분석-
dc.typeThesis(Master)-
dc.identifier.CNRN325007-
dc.description.department한국과학기술원 :금융공학프로그램,-
dc.contributor.alternativeauthorKim, Ahhyoun-
Appears in Collection
KGSF-Theses_Master(석사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0