Ultrathin organosiloxane membrane for precision organic solvent nanofiltration

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 1
  • Download : 0
Promising advances in membrane technology can lead to energy-saving and eco-friendly solutions in industrial sectors. This work demonstrates a highly selective membrane with ultrathin and highly interconnected organosiloxane polymer nanolayers by initiated chemical vapor deposition to effectively separate solutes within the molecular weight range of 150-300 g mol-1. We optimize the poly(1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane) membrane by adjusting both the thickness of the selective layer and the pore sizes of its support membranes. Notably, the 29 nm selective layer imparts a uniformly narrow molecular sieving property, providing a record-high solute-solute selectivity of 39.88 for different-sized solutes. Furthermore, a solute-solute selectivity of 11.04 was demonstrated using the real-world active pharmaceutical ingredient mixture of Acyclovir and Valacyclovir, key components for Herpes virus treatment, despite their molecular weight difference of less than 100 g mol-1. The highly interconnected membrane is expected to meet rigorous requirements for high-standard active pharmaceutical ingredient separation.,The use of membranes under harsh conditions, particularly involving the separation of complex organic solvents, remains challenging. Here the authors demonstrate an ultrathin organosiloxane polymer membrane using initiated chemical vapor deposition to effectively separate solutes within the molecular weight range of 150-300 g mol-1.,
Publisher
NATURE PORTFOLIO
Issue Date
2024-03
Language
English
Citation

NATURE COMMUNICATIONS, v.15, no.1

URI
http://hdl.handle.net/10203/320373
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0