Ultrathin All-Solid-State MoS2-Based Electrolyte Gated Synaptic Transistor with Tunable Organic-Inorganic Hybrid Film

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 102
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorOh, Jungyeopko
dc.contributor.authorPark, SeoHakko
dc.contributor.authorLee, Sang Hunko
dc.contributor.authorKim, Sungkyuko
dc.contributor.authorLee, Hyeonjiko
dc.contributor.authorLee, ChangHyeonko
dc.contributor.authorHong, Woonggiko
dc.contributor.authorCha, Jun-Hweko
dc.contributor.authorKang, Minguko
dc.contributor.authorJin, Jun Hyupko
dc.contributor.authorIm, Sung Gapko
dc.contributor.authorKim, Min Juko
dc.contributor.authorChoi, Sung-Yoolko
dc.date.accessioned2024-07-03T09:00:08Z-
dc.date.available2024-07-03T09:00:08Z-
dc.date.created2024-04-17-
dc.date.created2024-04-17-
dc.date.created2024-04-17-
dc.date.issued2024-06-
dc.identifier.citationADVANCED SCIENCE, v.11, no.23-
dc.identifier.issn2198-3844-
dc.identifier.urihttp://hdl.handle.net/10203/320134-
dc.description.abstractElectrolyte-gated synaptic transistors (EGSTs) have attracted considerable attention as synaptic devices owing to their adjustable conductance, low power consumption, and multi-state storage capabilities. To demonstrate high-density EGST arrays, 2D materials are recommended owing to their excellent electrical properties and ultrathin profile. However, widespread implementation of 2D-based EGSTs has challenges in achieving large-area channel growth and finding compatible nanoscale solid electrolytes. This study demonstrates large-scale process-compatible, all-solid-state EGSTs utilizing molybdenum disulfide (MoS2) channels grown through chemical vapor deposition (CVD) and sub-30 nm organic-inorganic hybrid electrolyte polymers synthesized via initiated chemical vapor deposition (iCVD). The iCVD technique enables precise modulation of the hydroxyl group density in the hybrid matrix, allowing the modulation of proton conduction, resulting in adjustable synaptic performance. By leveraging the tunable iCVD-based hybrid electrolyte, the fabricated EGSTs achieve remarkable attributes: a wide on/off ratio of 10(9), state retention exceeding 10(3), and linear conductance updates. Additionally, the device exhibits endurance surpassing 5 x 10(4) cycles, while maintaining a low energy consumption of 200 fJ/spike. To evaluate the practicality of these EGSTs, a subset of devices is employed in system-level simulations of MNIST handwritten digit recognition, yielding a recognition rate of 93.2%.-
dc.languageEnglish-
dc.publisherWiley-
dc.titleUltrathin All-Solid-State MoS2-Based Electrolyte Gated Synaptic Transistor with Tunable Organic-Inorganic Hybrid Film-
dc.typeArticle-
dc.identifier.wosid001195684300001-
dc.identifier.scopusid2-s2.0-85189143142-
dc.type.rimsART-
dc.citation.volume11-
dc.citation.issue23-
dc.citation.publicationnameADVANCED SCIENCE-
dc.identifier.doi10.1002/advs.202308847-
dc.contributor.localauthorIm, Sung Gap-
dc.contributor.localauthorChoi, Sung-Yool-
dc.contributor.nonIdAuthorLee, Sang Hun-
dc.contributor.nonIdAuthorKim, Sungkyu-
dc.contributor.nonIdAuthorHong, Woonggi-
dc.contributor.nonIdAuthorJin, Jun Hyup-
dc.contributor.nonIdAuthorKim, Min Ju-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorartificial synapse-
dc.subject.keywordAuthordeep neural network-
dc.subject.keywordAuthorelectrolyte gated transistor-
dc.subject.keywordAuthorinitiated chemical vapor deposition-
dc.subject.keywordAuthormolybdenum disulfide-
dc.subject.keywordPlusMEMORY-
dc.subject.keywordPlusACCURACY-
dc.subject.keywordPlusALUMINUM-
dc.subject.keywordPlusARRAY-
Appears in Collection
CBE-Journal Papers(저널논문)EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0