Atomically engineered molybdenum di-sulfide by dual heteroatom doping for accelerating hydrogen evolution reaction on cadmium sulfide nanorods

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 17
  • Download : 0
Two-dimensional transition metal dichalcogenides (TMDs) with layered nanostructures show promise as nonprecious, noble-metal-free water splitting/hydrogen evolution substances. In TMDs, catalytic activity depends on exposed edges because basal planes are inactive. Changing basal planes into catalytically active sites is a challenge. Doping MoS2 with transition metals renders the surfaces of its basal planes catalytically active. Herein, we attempt to activate in-plane surface of MoS2 by doping transition metals (Fe and Co) into the crystal structure, which induces the in-plane sites for catalytic processes, and this doped MoS2 adorned to the CdS nanorods. Incorporating heteroatoms aids in the acceleration of catalytic kinetics, as the obtained activity is comparable to that of single metal doped MoS2/CdS. A remarkable hydrogen production rate of 350 mol h-1 and a 58-fold times improvement observed in optimal FeCo-MoS2 loaded CdS nanocomposite compared to that of pure CdS. This enhancement is due to the synergistic of the hetero atom doped MoS2, which enables for the efficient separation of the photogenerated charge carriers and elevates the surface shuttling characteristics for effective hydrogen production. Greater number of edge sites, increased charge carrier transport, and the introduction of new active sites are all responsible for this remarkable photocatalytic activity. For spatial separation and transportation, these concurrent principles can change physiochemical properties including active sites, surface area, band-edge potentials, and electrical conductivity. To the best of our knowledge, the current catalytic system outperforms all other MoS2 based CdS hybrids that have been reported thus far.
Publisher
ELSEVIER
Issue Date
2022-12
Language
English
Article Type
Article
Citation

SOLID STATE SCIENCES, v.134

ISSN
1293-2558
DOI
10.1016/j.solidstatesciences.2022.107047
URI
http://hdl.handle.net/10203/319976
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0