Social learning spontaneously emerges by searching optimal heuristics with deep reinforcement learning

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 7
  • Download : 0
How have individuals of social animals in nature evolved to learn from each other, and what would be the optimal strategy for such learning in a specific environment? Here, we address both problems by employing a deep reinforcement learning model to optimize the social learning strategies (SLSs) of agents in a cooperative game in a multi-dimensional landscape. Throughout the training for maximizing the overall payoff, we find that the agent spontaneously learns various concepts of social learning, such as copying, focusing on frequent and well-performing neighbors, self-comparison, long-term cooperation between agents, and the importance of balancing between individual and social learning, without any explicit guidance or prior knowledge about the system. The SLS from a fully trained agent outperforms all of the traditional, baseline SLSs in terms of mean payoff. We demonstrate the superior performance of the reinforcement learning agent in various environments, including temporally changing environments and real social networks, which also verifies the adaptability of our framework to different social settings.
Publisher
ML Research Press
Issue Date
2023-07-23
Language
English
Citation

ICML 2023, 40th International Conference on Machine Learning, pp.12319 - 12338

URI
http://hdl.handle.net/10203/319832
Appears in Collection
PH-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0