Bistable shock isolator tuned to zero-frequency singularity for platform protection

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 19
  • Download : 0
In this study, we examine a bistable shock isolator (BSI) and its shock -transmitting behaviors, particularly when tuned to the zero -frequency singularity (ZFS) condition. Under this condition, a snap -through transition occurs, and the BSI oscillation exhibits critical slowing down. By tuning the BSI to the ZFS condition, harmful shock transmission to the protected platform can be significantly delayed, allowing protective measures to be implemented before the transmission of dangerous forces. Moreover, the magnitude of the transmitted force is reduced considerably. We establish a mathematical model of the BSI and theoretically analyze the ZFS. Using numerical investigations, we demonstrate the benefits of the ZFS in terms of shockisolation performance, including delay and mitigation of force transmission. Parametric and spectral analyses further confirm the benefits of the BSI. We validate the existence of the ZFS and its effects from the perspective of shock isolation by developing a BSI prototype and conducting experiments. Furthermore, the need for future research focusing on the BSI in realworld scenarios is discussed. It is believed that the findings reported herein will pave the way for advances in shock -protection technologies based on nonlinear bistable systems.
Publisher
ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
Issue Date
2024-03
Language
English
Citation

MECHANICAL SYSTEMS AND SIGNAL PROCESSING, v.210

ISSN
0888-3270
URI
http://hdl.handle.net/10203/319815
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0