Multicomponent transition metal phosphides derived from layered double hydroxide double-shelled nanocages as an efficient non-precious cocatalyst for hydrogen production

Cited 100 time in webofscience Cited 0 time in scopus
  • Hit : 12
  • Download : 0
Non-precious transition metal phosphides (TMPs) are emerging as the most promising substitutes for expensive noble metal-based co-catalysts for the hydrogen evolution reaction. While the synthesis of TMPs is well established, it is extremely challenging to design porous multicomponent transition metal phosphides (MCTMPs) to overcome the drawbacks of TMPs, namely, limited active sites and low surface area. Herein, we synthesized MCTMPs (containing Co, Ni, and Mo) from layered double hydroxide double-shelled nanocages by a metal-organic framework (MOF) template-engaged strategy. Benefiting from the rich structural features, high specific surface area, and multiple active components in the composition, the MCTMPs manifest greatly enhanced photocatalytic hydrogen evolution properties when integrated with CdS semiconductor nanorods. The observed hydrogen evolution rate is 53.76 fold higher than that of the bare CdS nanostructures and 4.37 times higher than that of the benchmark 2 wt% Pt-CdS nanorods, with a quantum efficiency of 40.6%. A possible explanation for the enhancement of the photocatalytic activity was proposed on the basis of the separation efficiency of the photogenerated charge carriers; this was further confirmed by photocurrent, electrochemical impedance spectroscopy, and photoluminescence studies. We believe that the work presented here represents a novel design strategy for MCTMPs with active noble metal free components with applications as sunlight-driven photocatalysts for hydrogen production through water splitting.
Publisher
ROYAL SOC CHEMISTRY
Issue Date
2016
Language
English
Article Type
Article
Citation

JOURNAL OF MATERIALS CHEMISTRY A, v.4, no.36, pp.13890 - 13898

ISSN
2050-7488
DOI
10.1039/c6ta05741a
URI
http://hdl.handle.net/10203/318408
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 100 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0