Retina-Inspired Carbon Nitride-Based Photonic Synapses for Selective Detection of UV Light

Cited 261 time in webofscience Cited 0 time in scopus
  • Hit : 70
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorPark, Hea-Limko
dc.contributor.authorKim, Haejuko
dc.contributor.authorLim, Donggyuko
dc.contributor.authorZhou, Huanyuko
dc.contributor.authorKim, Young-Hoonko
dc.contributor.authorLee, Yeongjunko
dc.contributor.authorPark, Sungjinko
dc.contributor.authorLee, Tae-Wooko
dc.date.accessioned2024-03-04T02:00:16Z-
dc.date.available2024-03-04T02:00:16Z-
dc.date.created2024-02-26-
dc.date.issued2020-03-
dc.identifier.citationADVANCED MATERIALS, v.32, no.11-
dc.identifier.issn0935-9648-
dc.identifier.urihttp://hdl.handle.net/10203/318364-
dc.description.abstractPhotonic synapses combine sensing and processing in a single device, so they are promising candidates to emulate visual perception of a biological retina. However, photonic synapses with wavelength selectivity, which is a key property for visual perception, have not been developed so far. Herein, organic photonic synapses that selectively detect UV rays and process various optical stimuli are presented. The photonic synapses use carbon nitride (C3N4) as an UV-responsive floating-gate layer in transistor geometry. C3N4 nanodots dominantly absorb UV light; this trait is the basis of UV selectivity in these photonic synapses. The presented devices consume only 18.06 fJ per synaptic event, which is comparable to the energy consumption of biological synapses. Furthermore, in situ modulation of exposure to UV light is demonstrated by integrating the devices with UV transmittance modulators. These smart systems can be further developed to combine detection and dose-calculation to determine how and when to decrease UV transmittance for preventive health care.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleRetina-Inspired Carbon Nitride-Based Photonic Synapses for Selective Detection of UV Light-
dc.typeArticle-
dc.identifier.wosid000521106700004-
dc.identifier.scopusid2-s2.0-85078674932-
dc.type.rimsART-
dc.citation.volume32-
dc.citation.issue11-
dc.citation.publicationnameADVANCED MATERIALS-
dc.identifier.doi10.1002/adma.201906899-
dc.contributor.localauthorLee, Yeongjun-
dc.contributor.nonIdAuthorPark, Hea-Lim-
dc.contributor.nonIdAuthorKim, Haeju-
dc.contributor.nonIdAuthorLim, Donggyu-
dc.contributor.nonIdAuthorZhou, Huanyu-
dc.contributor.nonIdAuthorKim, Young-Hoon-
dc.contributor.nonIdAuthorPark, Sungjin-
dc.contributor.nonIdAuthorLee, Tae-Woo-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorartificial retina-
dc.subject.keywordAuthorartificial synapses-
dc.subject.keywordAuthorphotonic synapses-
dc.subject.keywordAuthorUV detection-
dc.subject.keywordPlusVISIBLE-LIGHT-
dc.subject.keywordPlusTRANSISTORS-
dc.subject.keywordPlusPENTACENE-
dc.subject.keywordPlusWATER-
Appears in Collection
BC-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 261 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0