Organic electronic synapses with low energy consumption

Cited 90 time in webofscience Cited 0 time in scopus
  • Hit : 157
  • Download : 0
A SUMMARY The von Neumann computing architecture consists of separated processing and memory elements; it is too bulky and energy-intensive to be implemented in the upcoming artificial intelligence age. In contrast, neurons and synapses in a brain perform learning and memory in an integrated manner and function energy- efficiently by analog adjustment of synaptic strengths in response to stimulation. Organic artificial synapses provide good emulation of the functions and structures of biological synapses and are easily fabricated and therefore can be applied to various neuromorphic electronic devices. In particular, organic artificial synapses that consume energy at a level comparable to that of a biological synapse show great promise for use in future low-energy neuromorphic devices. Here, we review the trends of energy consumption of organic artificial synapses and how it is affected by the structure, materials, and operation mechanism. We also present a strategy to decrease the energy consumption of organic neuromorphic devices. Our review will help the development of versatile low-energy organic neuromorphic electronics.
Publisher
CELL PRESS
Issue Date
2021-04
Language
English
Article Type
Review
Citation

JOULE, v.5, no.4, pp.794 - 810

ISSN
2542-4351
DOI
10.1016/j.joule.2021.01.005
URI
http://hdl.handle.net/10203/318363
Appears in Collection
BC-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 90 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0