Optimizing coagulant dosage using deep learning models with large-scale data

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 80
  • Download : 0
Water treatment plants are facing challenges that necessitate transition to automated processes using advanced technologies. This study introduces a novel approach to optimize coagulant dosage in water treatment processes by employing a deep learning model. The study utilized minute-by-minute data monitored in real time over a span of five years, marking the first attempt in drinking water process modeling to leverage such a comprehensive dataset. The deep learning model integrates a one-dimensional convolutional neural network (Conv1D) and gated recurrent unit (GRU) to effectively extract features and model complex time-series data. Initially, the model predicted coagulant dosage and sedimentation basin turbidity, validated against a physicochemical model. Subsequently, the model optimized coagulant dosage in two ways: 1) maintaining sedimentation basin turbidity below the 1.0 NTU guideline, and 2) analyzing changes in sedimentation basin turbidity resulting from reduced coagulant dosage (5–20%). The findings of the study highlight the effectiveness of the deep learning model in optimizing coagulant dosage with substantial reductions in coagulant dosage (approximately 22% reduction and 21 million KRW/year). The results demonstrate the potential of deep learning models in enhancing the efficiency and cost-effectiveness of water treatment processes, ultimately facilitating process automation.
Publisher
Elsevier Ltd
Issue Date
2024-02
Language
English
Article Type
Article
Citation

Chemosphere, v.350

ISSN
0045-6535
DOI
10.1016/j.chemosphere.2023.140989
URI
http://hdl.handle.net/10203/317938
Appears in Collection
CE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0