Molecular basis for PHF7-mediated ubiquitination of histone H3

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 72
  • Download : 0
In this study, Lee et al. provide structural insight into the domain-specific functions that collaboratively contribute to the role of the RING-type E3 ligase PHF7 in histone ubiquitination. They further describe the molecular interactions that are essential for histone recognition, E2 ubiquitin-conjugating enzyme recruitment, and nucleosome binding by PHF7. The RING-type E3 ligase has been known for over two decades, yet its diverse modes of action are still the subject of active research. Plant homeodomain (PHD) finger protein 7 (PHF7) is a RING-type E3 ubiquitin ligase responsible for histone ubiquitination. PHF7 comprises three zinc finger domains: an extended PHD (ePHD), a RING domain, and a PHD. While the function of the RING domain is largely understood, the roles of the other two domains in E3 ligase activity remain elusive. Here, we present the crystal structure of PHF7 in complex with the E2 ubiquitin-conjugating enzyme (E2). Our structure shows that E2 is effectively captured between the RING domain and the C-terminal PHD, facilitating E2 recruitment through direct contact. In addition, through in vitro binding and functional assays, we demonstrate that the N-terminal ePHD recognizes the nucleosome via DNA binding, whereas the C-terminal PHD is involved in histone H3 recognition. Our results provide a molecular basis for the E3 ligase activity of PHF7 and uncover the specific yet collaborative contributions of each domain to the PHF7 ubiquitination activity.
Publisher
COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
Issue Date
2023-11
Language
English
Article Type
Article
Citation

GENES & DEVELOPMENT, v.37, no.21-24, pp.984 - 997

ISSN
0890-9369
DOI
10.1101/gad.350989.123
URI
http://hdl.handle.net/10203/317862
Appears in Collection
BS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0