Catalytic boosting on AuCu bimetallic nanoparticles by oxygen-induced atomic restructuring

Cited 8 time in webofscience Cited 0 time in scopus
  • Hit : 111
  • Download : 0
Understanding the structure-activity relationship over silica-supported Au-based bimetallic nanocatalysts in CO oxidation is essential in elucidating active sites and catalytic mechanisms. Here, we uncover that structure-activity relationship over a silica-supported 10 nm sized AuCu bimetallic model nanocatalyst for CO oxidation. Oxygen-induced atomic restructuring of AuCu nanocrystals is comprehensively investigated using combined operando spectroscopic and microscopic techniques, including near-ambient-pressure X-ray photoelectron spectroscopy, diffuse reflectance infrared Fourier-transform spectroscopy, and environmental transmission electron microscopy. We show that the formation of CuOx/Au heterostructure gives rise to the enhancement of catalytic activity for CO oxidation. The formation of the reactive heterostructure on catalysis was rationalized by density functional theory calculation. Our results indicate that intermediate heterostructure with a metal-oxide interface leads to strong electronic coupling between catalyst and support (i.e., electronic metal-support interaction effect).
Publisher
ELSEVIER
Issue Date
2023-08
Language
English
Article Type
Article
Citation

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, v.331

ISSN
0926-3373
DOI
10.1016/j.apcatb.2023.122704
URI
http://hdl.handle.net/10203/314856
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 8 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0