Colloidal stability and surface chemistry of aqueous tetravalent uranium nanoparticles: Effects of 4-nitrocatechol adsorption

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 297
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorYoon, Inhakko
dc.contributor.authorCha, Wansikko
dc.contributor.authorChoi, Seonggyuko
dc.contributor.authorCho, Hyejinko
dc.contributor.authorCho, Hye-Ryunko
dc.contributor.authorYun, Jong-Ilko
dc.date.accessioned2023-11-06T07:00:08Z-
dc.date.available2023-11-06T07:00:08Z-
dc.date.created2023-11-06-
dc.date.created2023-11-06-
dc.date.issued2023-11-
dc.identifier.citationSURFACES AND INTERFACES, v.42-
dc.identifier.issn2468-0230-
dc.identifier.urihttp://hdl.handle.net/10203/314311-
dc.description.abstractThe colloidal stability of uranium(IV) nanoparticles (U(IV)-NPs), which influences the subsurface U migration from contaminated sites, can be altered by the adsorption of natural organic matters possessing surface-binding groups, such as catechols. Therefore, in this study, the effects of catechol binding groups on the colloidal stability and surface chemistry of U(IV)-NPs in anoxic aqueous solutions were probed using 4-nitrocatechol (nCA) over a wide pH range. Multiple complementary investigations including ζ-potential measurements, controlled acid–base titration, adsorption isotherm analysis, and surface complexation modeling revealed that nCA significantly modified the colloidal behavior of the intact U(IV)-NPs—which were stable only in acidic solutions (pH ∼2)—by shifting the isoelectric point to a lower-pH region in a concentration-dependent manner via strong adsorption complying the Langmuir isotherm model. Interestingly, the nCA-containing colloidal solutions stabilized at high pH and enabled U(IV)-NP redispersion. This colloidal behavior originated from the protonation/deprotonation capability of [tbnd]UOH sites on UO2(cr)-like primary particles, as evidenced by the two pKa values determined using the surface ionization model (5.0 ± 0.6 and 7.4 ± 0.7), as well as the strong inner-sphere and mixed monodentate/bidentate complex formation with nCA, as signified by the observed surface-enhanced infrared absorption effects and one- or two-site complexation modeling results.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.titleColloidal stability and surface chemistry of aqueous tetravalent uranium nanoparticles: Effects of 4-nitrocatechol adsorption-
dc.typeArticle-
dc.identifier.wosid001092773300001-
dc.identifier.scopusid2-s2.0-85173973586-
dc.type.rimsART-
dc.citation.volume42-
dc.citation.publicationnameSURFACES AND INTERFACES-
dc.identifier.doi10.1016/j.surfin.2023.103458-
dc.contributor.localauthorYun, Jong-Il-
dc.contributor.nonIdAuthorYoon, Inhak-
dc.contributor.nonIdAuthorCha, Wansik-
dc.contributor.nonIdAuthorChoi, Seonggyu-
dc.contributor.nonIdAuthorCho, Hyejin-
dc.contributor.nonIdAuthorCho, Hye-Ryun-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorU(IV) nanoparticles-
dc.subject.keywordAuthorColloidal stability-
dc.subject.keywordAuthor4-Nitrocatechol-
dc.subject.keywordAuthorSurface complexation model-
dc.subject.keywordAuthorLangmuir adsorption isotherms-
dc.subject.keywordAuthorSurface-enhanced infrared absorption (SEIRA)-
dc.subject.keywordPlusMETAL (HYDR)OXIDE/WATER INTERFACE-
dc.subject.keywordPlusINFRARED-ABSORPTION SPECTROSCOPY-
dc.subject.keywordPlusWATER INTERFACE-
dc.subject.keywordPlusANATASE NANOPARTICLES-
dc.subject.keywordPlusUO2 OXIDATION-
dc.subject.keywordPlusHUMIC-ACID-
dc.subject.keywordPlusCATECHOL-
dc.subject.keywordPlusCOMPLEXATION-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusSUBSTITUENTS-
Appears in Collection
NE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0