Enhanced Antibacterial Activity at Ag-Cu Nanojunctions: Unveiling the Mechanism with Simple Surfaces of CuNPs-on-Ag Films

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 56
  • Download : 0
Deposition of CuNPs on silver film gives rise to the formation of active Ag-Cu interfaces leading to dramatic enhancements in antibacterial activity against Escherichia coli. Transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDAX) analyses reveal that CuNPs are covered in a thin Cu2O shell, while X-ray photoelectron spectroscopy measurements (XPS) reveal that the Ag film samples contain significant amounts of Ag2O. XPS analyses show that the deposition of CuNPs on Ag films leads to the formation of a photoactive Ag2O-Cu2O heterostructure. Following a Z-scheme mechanism, electrons from the conduction band of Ag2O recombine with photogenerated holes from the valence band of Cu2O. Consequently, electrons at Cu2O's conduction band render Cu reduced and cause reductive activation of surface oxygen species on Cu forming reactive oxygen species (ROS). Interaction between metallic Cu and ROS species leads to the formation of a Cu(OH)(2) phase. Both ROS and Cu(OH)(2) species have previously been reported to lead to enhanced antibacterial properties. Holes on Ag2O produce a highly oxidized AgO phase, a phase reported to exhibit excellent antibacterial properties. Quantitative analysis of Cu and Ag high-resolution X-ray photoelectron spectroscopy (HR-XPS) spectra directly reveals several-fold increases in these active phases in full agreement with the observed increase in antibacterial activities. This study provides insight and surface design parameters by elucidating the important roles of Ag and Cu's bifunctionality as active antibacterial materials.
Publisher
AMER CHEMICAL SOC
Issue Date
2023-09
Language
English
Article Type
Article
Citation

ACS OMEGA, v.8, no.38, pp.34919 - 34927

ISSN
2470-1343
DOI
10.1021/acsomega.3c04303
URI
http://hdl.handle.net/10203/313400
Appears in Collection
RIMS Journal Papers
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0