Investigation of flow boiling heat transfer and boiling crisis on a rough surface using infrared thermometry

Cited 30 time in webofscience Cited 0 time in scopus
  • Hit : 136
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorSu, GYko
dc.contributor.authorWang, Cko
dc.contributor.authorZhang, Lko
dc.contributor.authorSeong, Jee Hyunko
dc.contributor.authorKommajosyula, Rko
dc.contributor.authorPhillips, Bko
dc.contributor.authorBucci, Mko
dc.date.accessioned2023-10-06T08:00:59Z-
dc.date.available2023-10-06T08:00:59Z-
dc.date.created2023-10-06-
dc.date.created2023-10-06-
dc.date.issued2020-10-
dc.identifier.citationINTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, v.160-
dc.identifier.issn0017-9310-
dc.identifier.urihttp://hdl.handle.net/10203/313093-
dc.description.abstractWe design and build a special heater to enable infrared investigations of boiling heat transfer on surfaces featuring the typical roughness and scratch pattern of commercial-grade heat transfer surfaces (in this case a zirconium alloy typically used as fuel cladding material in nuclear reactors). We use high-speed infrared thermometry to investigate surface effects on the boiling process for both the rough infrared heater and a reference more conventional, nano-smooth infrared heater. Compared to the nano-smooth surface, the rough surface has larger nucleation sites, which require a lower nucleation temperature. The rough surface has a much smaller bubble departure volume. However, it has a much higher nucleation site density, and, overall, a higher heat transfer coefficient. We capture this behavior with a stochastic heat flux partitioning model. Notably, while the two surfaces have very different boiling dynamics, the boiling crisis has a common "signature". For both surfaces, the probability density functions of bubble footprint areas follow a power law with a negative exponent smaller than 3, also known as a scale-free distribution. We predict these observations and the onset of the boiling crisis using a continuum percolation model. These results corroborate the hypothesis of the boiling crisis as a percolative critical phase transition of the bubble interaction process.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.titleInvestigation of flow boiling heat transfer and boiling crisis on a rough surface using infrared thermometry-
dc.typeArticle-
dc.identifier.wosid000571812700040-
dc.identifier.scopusid2-s2.0-85087937206-
dc.type.rimsART-
dc.citation.volume160-
dc.citation.publicationnameINTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER-
dc.identifier.doi10.1016/j.ijheatmasstransfer.2020.120134-
dc.contributor.localauthorSeong, Jee Hyun-
dc.contributor.nonIdAuthorSu, GY-
dc.contributor.nonIdAuthorWang, C-
dc.contributor.nonIdAuthorZhang, L-
dc.contributor.nonIdAuthorKommajosyula, R-
dc.contributor.nonIdAuthorPhillips, B-
dc.contributor.nonIdAuthorBucci, M-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorSubcooled flow boiling-
dc.subject.keywordAuthorBoiling crisis-
dc.subject.keywordAuthorHeat partitioning-
dc.subject.keywordAuthorSurface roughness-
dc.subject.keywordAuthorInfrared thermometry-
dc.subject.keywordPlusBUBBLE-GROWTH-
dc.subject.keywordPlusPART I-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusPREDICTION-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusMECHANISMS-
dc.subject.keywordPlusDEPARTURE-
Appears in Collection
NE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 30 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0