Low-Profile, Large-Range Compressive Strain Sensing Using Micromanufactured CNT Micropillar Arrays

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 119
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorCao, Changhongko
dc.contributor.authorBoutilier, Michael S. H.ko
dc.contributor.authorKim, Sanhako
dc.contributor.authorTaheri-Mousavi, S. Mohadesehko
dc.contributor.authorNayakanti, Nigamaako
dc.contributor.authorRoberts, Ricardoko
dc.contributor.authorOwens, Crystalko
dc.contributor.authorHart, A. Johnko
dc.date.accessioned2023-09-10T04:01:44Z-
dc.date.available2023-09-10T04:01:44Z-
dc.date.created2023-08-15-
dc.date.created2023-08-15-
dc.date.issued2023-08-
dc.identifier.citationACS APPLIED MATERIALS & INTERFACES, v.15, no.32, pp.38665 - 38673-
dc.identifier.issn1944-8244-
dc.identifier.urihttp://hdl.handle.net/10203/312379-
dc.description.abstractTactile sensors, or sensors that collect measurements through touch, have versatile applications in a wide range of fields including robotic gripping, intelligent manufacturing, and biomedical technology. Hoping to match the ability of human hands to sense physical changes in objects through touch, engineers have experimented with a variety of materials from soft polymers to hard ceramics, but so far, all have fallen short. A grand challenge for developers of “human-like” bionic tactile sensors is to be able to sense a wide range of strains while maintaining the low profile necessary for compact integration. Here, we developed a low-profile tactile sensor (∼300 μm in height) based on patterned, vertically aligned carbon nanotubes (PVACNT) that can repetitively sense compressive strains of up to 75%. Upon compression, reversible changes occur in the points of contact between CNTs, producing measurable changes in electrical admittance. By patterning VACNT pillars with different aspect ratios and pitch sizes, we engineered the range and resolution of strain sensing, suggesting that CNT-based tactile sensors can be integrated according to device specifications.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleLow-Profile, Large-Range Compressive Strain Sensing Using Micromanufactured CNT Micropillar Arrays-
dc.typeArticle-
dc.identifier.wosid001043811300001-
dc.identifier.scopusid2-s2.0-85168221217-
dc.type.rimsART-
dc.citation.volume15-
dc.citation.issue32-
dc.citation.beginningpage38665-
dc.citation.endingpage38673-
dc.citation.publicationnameACS APPLIED MATERIALS & INTERFACES-
dc.identifier.doi10.1021/acsami.3c06299-
dc.contributor.localauthorKim, Sanha-
dc.contributor.nonIdAuthorCao, Changhong-
dc.contributor.nonIdAuthorBoutilier, Michael S. H.-
dc.contributor.nonIdAuthorTaheri-Mousavi, S. Mohadeseh-
dc.contributor.nonIdAuthorNayakanti, Nigamaa-
dc.contributor.nonIdAuthorRoberts, Ricardo-
dc.contributor.nonIdAuthorOwens, Crystal-
dc.contributor.nonIdAuthorHart, A. John-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorcarbon nanotube-
dc.subject.keywordAuthortactile sensing-
dc.subject.keywordAuthormicromanufacturing-
dc.subject.keywordAuthorstrain sensing-
dc.subject.keywordAuthorlow-profile-
dc.subject.keywordPlusCARBON NANOTUBE ARRAYS-
dc.subject.keywordPlusPOLYMER TACTILE SENSOR-
dc.subject.keywordPlusPRESSURE SENSORS-
dc.subject.keywordPlusCONDUCTORS-
dc.subject.keywordPlusSPONGES-
dc.subject.keywordPlusMATRIX-
dc.subject.keywordPlusFORCE-
dc.subject.keywordPlusFILMS-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0