Electrocatalysts for Zinc-Air Batteries Featuring Single Molybdenum Atoms in a Nitrogen-Doped Carbon Framework

Cited 43 time in webofscience Cited 0 time in scopus
  • Hit : 90
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorBalamurugan, Jayaramanko
dc.contributor.authorAusteria, P. Muthuko
dc.contributor.authorKim, Jun Beomko
dc.contributor.authorJeong, Eun-Sukko
dc.contributor.authorHuang, Hsin-Huiko
dc.contributor.authorKim, Do Hwanko
dc.contributor.authorKoratkar, Nikhilko
dc.contributor.authorKim, Sang Oukko
dc.date.accessioned2023-09-10T04:00:49Z-
dc.date.available2023-09-10T04:00:49Z-
dc.date.created2023-08-07-
dc.date.issued2023-09-
dc.identifier.citationADVANCED MATERIALS, v.35, no.35-
dc.identifier.issn0935-9648-
dc.identifier.urihttp://hdl.handle.net/10203/312372-
dc.description.abstractBifunctional catalysts can facilitate two different electrochemical reactions with conflicting characteristics. Here, a highly reversible bifunctional electrocatalyst for rechargeable zinc-air batteries (ZABs) is reported featuring a "core-shell structure" in which N-doped graphene sheets wrap around vanadium molybdenum oxynitride nanoparticles. Single Mo atoms are released from the particle core during synthesis and anchored to electronegative N-dopant species in the graphitic shell. The resultant Mo single-atom catalysts excel as active oxygen evolution reaction (OER) sites in pyrrolic-N and as active oxygen reduction reaction (ORR) sites in pyridinic-N environments. ZABs with such bifunctional and multicomponent single-atom catalysts deliver high power density (& AP;376.4 mW cm(-2)) and long cycle life of over 630 h, outperforming noble-metal-based benchmarks. Flexible ZABs that can tolerate a wide range of temperatures (-20 to 80 & DEG;C) under severe mechanical deformation are also demonstrated-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleElectrocatalysts for Zinc-Air Batteries Featuring Single Molybdenum Atoms in a Nitrogen-Doped Carbon Framework-
dc.typeArticle-
dc.identifier.wosid001031638500001-
dc.identifier.scopusid2-s2.0-85164991013-
dc.type.rimsART-
dc.citation.volume35-
dc.citation.issue35-
dc.citation.publicationnameADVANCED MATERIALS-
dc.identifier.doi10.1002/adma.202302625-
dc.contributor.localauthorKim, Sang Ouk-
dc.contributor.nonIdAuthorAusteria, P. Muthu-
dc.contributor.nonIdAuthorJeong, Eun-Suk-
dc.contributor.nonIdAuthorHuang, Hsin-Hui-
dc.contributor.nonIdAuthorKim, Do Hwan-
dc.contributor.nonIdAuthorKoratkar, Nikhil-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorcore-shell interface-
dc.subject.keywordAuthorinterfacial engineering-
dc.subject.keywordAuthoroxygen evolution reaction-
dc.subject.keywordAuthoroxygen reduction reaction-
dc.subject.keywordAuthorsingle-atom catalysts-
dc.subject.keywordAuthorzinc-air batteries-
dc.subject.keywordPlusOXYGEN REDUCTION REACTION-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusSITES-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusCOBALT-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 43 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0