Modeling of colloidal fouling in forward osmosis membrane: Effects of reverse draw solution permeation

Cited 43 time in webofscience Cited 0 time in scopus
  • Hit : 47
  • Download : 0
A numerical model for predicting the flux decline due to colloidal fouling was developed for a forward osmosis (FO) membrane system. We derived the kinetic equation of the cake layer growth based on a first-order reaction and control volume approach. Based on the model simulation, it was found that the deposited particles on a membrane surface are proportional to the feed concentration and the permeate flux. Moreover, the simulation result reveals that the cake-enhanced osmotic pressure (CEOP) is a key factor diminishing the permeate flux for large colloidal foulants. For small colloidal foulants, the hydraulic resistance of the cake layer is dominant in flux decline at the beginning of the fouling and CEOP increasingly become significant as fouling progresses. The effects of the reverse draw solute permeation on the flux decline were also simulated. Interestingly, the increased reverse draw solute permeation obtained by increasing the solute permeability showed little effect on the flux decline. Contrarily, variation of the diffusivity significantly influenced the flux decline. Consequently, the numerical model developed in this paper suggests that the selection of draw solute for an FO membrane process should be carefully regarded, along with the fouling mechanism. (C) 2013 Elsevier B.V. All rights reserved.
Publisher
ELSEVIER
Issue Date
2013-04
Language
English
Article Type
Article
Citation

DESALINATION, v.314, pp.115 - 123

ISSN
0011-9164
DOI
10.1016/j.desal.2013.01.009
URI
http://hdl.handle.net/10203/311095
Appears in Collection
CE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 43 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0