Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries

Cited 46 time in webofscience Cited 0 time in scopus
  • Hit : 90
  • Download : 0
<jats:title>Abstract</jats:title><jats:p>Designing highly conductive and (electro)chemical stable inorganic solid electrolytes using cost-effective materials is crucial for developing all-solid-state batteries. Here, we report halide nanocomposite solid electrolytes (HNSEs) ZrO<jats:sub>2</jats:sub>(-ACl)-A<jats:sub>2</jats:sub>ZrCl<jats:sub>6</jats:sub> (A = Li or Na) that demonstrate improved ionic conductivities at 30 °C, from 0.40 to 1.3 mS cm<jats:sup>−1</jats:sup> and from 0.011 to 0.11 mS cm<jats:sup>−1</jats:sup> for Li<jats:sup>+</jats:sup> and Na<jats:sup>+</jats:sup>, respectively, compared to A<jats:sub>2</jats:sub>ZrCl<jats:sub>6</jats:sub>, and improved compatibility with sulfide solid electrolytes. The mechanochemical method employing Li<jats:sub>2</jats:sub>O for the HNSEs synthesis enables the formation of nanostructured networks that promote interfacial superionic conduction. Via density functional theory calculations combined with synchrotron X-ray and <jats:sup>6</jats:sup>Li nuclear magnetic resonance measurements and analyses, we demonstrate that interfacial oxygen-substituted compounds are responsible for the boosted interfacial conduction mechanism. Compared to state-of-the-art Li<jats:sub>2</jats:sub>ZrCl<jats:sub>6</jats:sub>, the fluorinated ZrO<jats:sub>2</jats:sub>−2Li<jats:sub>2</jats:sub>ZrCl<jats:sub>5</jats:sub>F HNSE shows improved high-voltage stability and interfacial compatibility with Li<jats:sub>6</jats:sub>PS<jats:sub>5</jats:sub>Cl and layered lithium transition metal oxide-based positive electrodes without detrimentally affecting Li<jats:sup>+</jats:sup> conductivity. We also report the assembly and testing of a Li-In||LiNi<jats:sub>0.88</jats:sub>Co<jats:sub>0.11</jats:sub>Mn<jats:sub>0.01</jats:sub>O<jats:sub>2</jats:sub> all-solid-state lab-scale cell operating at 30 °C and 70 MPa and capable of delivering a specific discharge of 115 mAh g<jats:sup>−1</jats:sup> after almost 2000 cycles at 400 mA g<jats:sup>−1</jats:sup>.</jats:p>
Publisher
NATURE PORTFOLIO
Issue Date
2023-04
Language
English
Article Type
Article
Citation

NATURE COMMUNICATIONS, v.14, no.1

ISSN
2041-1723
DOI
10.1038/s41467-023-38037-z
URI
http://hdl.handle.net/10203/310429
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 46 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0