Approximating bone ECM: Crosslinking directs individual and coupled osteoblast/osteoclast behavior

Cited 27 time in webofscience Cited 0 time in scopus
  • Hit : 146
  • Download : 0
Osteoblast and osteoclast communication (i.e. osteocoupling) is an intricate process, in which the biophysical profile of bone ECM is an aggregate product of their activities. While the effect of microenvironmental cues on osteoblast and osteoclast maturation has been resolved into individual variables (e.g. stiffness or topography), a single cue can be limited with regards to reflecting the full biophysical scope of natural bone ECM. Additionally, the natural modulation of bone ECM, which involves collagenous fibril and elastin crosslinking via lysyl oxidase, has yet to be reflected in current synthetic platforms. Here, we move beyond traditional substrates and use cell-derived ECM to examine individual and coupled osteoblast and osteoclast behavior on a physiological platform. Specifically, preosteoblast-derived ECM is crosslinked with genipin, a biocompatible crosslinker, to emulate physiological lysyl oxidase-mediated ECM crosslinking. We demonstrate that different concentrations of genipin yield changes to ECM density, stiffness, and roughness while retaining biocompatibility. By approximating various bone ECM profiles, we examine how individual and coupled osteoblast and osteoclast behavior are affected. Ultimately, we demonstrate an increase in osteoblast and osteoclast differentiation on compact and loose ECM, respectively, and identify ECM crosslinking density as an underlying force in osteocoupling behavior. (C) 2016 Elsevier Ltd. All rights reserved.
Publisher
ELSEVIER SCI LTD
Issue Date
2016-10
Language
English
Article Type
Article
Citation

BIOMATERIALS, v.103, pp.22 - 32

ISSN
0142-9612
DOI
10.1016/j.biomaterials.2016.06.052
URI
http://hdl.handle.net/10203/310411
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 27 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0