Measurements of self-excited instabilities and nitrogen oxides emissions in a multi-element lean-premixed hydrogen/methane/air flame ensemble

Cited 13 time in webofscience Cited 0 time in scopus
  • Hit : 152
  • Download : 0
Understanding the distinguishing physical properties of multi-element lean-premixed high hydrogen content flames is expected to be integral to the development of carbon-neutral, and ultimately carbon-free, gas turbine combustion systems. Despite their fundamental importance, the thermoacoustic and emission-related characteristics of such small-scale flame ensembles are not thoroughly understood, particularly for the full range of 0 to 100% hydrogen content blended with methane fuel. Here we investigate the structure and collective behavior of a multi-element lean-premixed hydrogen/methane/air flame ensemble using measurements of nitrogen oxides emissions and self-excited instability, combined with OH* and OH PLIF flame visualizations. Our results indicate that the system's responses can be classified into several distinctive stages according to their static and dynamic stability, including flame blowoff and thermoacoustically stable regions under relatively low hydrogen concentration conditions, low-frequency self-excited instabilities in intermediate hydrogen concentration, and triggering of intense pressure perturbations at about 1.7 kHz under high- or pure hydrogen combustion conditions. While the low-frequency combustion dynamics are dominated by axisymmetric translational movements of parallel flame fronts, the higher frequency response originates from significant lateral modulations accompanied by small-scale vortical rollup and flame surface annihilation due to front merging and pinch-off. Longitudinal-to-transverse dynamic transition is observed to play a mechanistic role in kinematically accommodating higher-frequency heat release rate fluctuations, and this newly identified mechanism suggests the possibility of high-frequency transverse modes, if such lateral motions are strong enough to induce inter-element flame interactions. In contrast to the substantial differences in thermoacoustic properties for different fuel compositions, the total nitrogen oxides emissions are found to depend primarily on adiabatic flame temperature; the influence of fuel composition is limited to approximately 20% under the inlet conditions considered.
Publisher
ELSEVIER SCIENCE INC
Issue Date
2023-06
Language
English
Article Type
Article
Citation

PROCEEDINGS OF THE COMBUSTION INSTITUTE, v.39, no.4, pp.4721 - 4729

ISSN
1540-7489
DOI
10.1016/j.proci.2022.07.258
URI
http://hdl.handle.net/10203/307256
Appears in Collection
AE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 13 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0