Development of an annealing process for rapid fabrication of solution-based Y3Fe5O12 thin films

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 115
  • Download : 0
In many industries, chemical-based fabrication is a preferred approach because mass production is possible at minimal cost. Here, we optimize the fabrication of solution-based Y3Fe5O12 (YIG) films on silicon substrates. This approach reduces the annealing time by more than eight-fold compared with the duration of conventional annealing. The film cross-section morphologies, crystallinities, and magnetic properties confirmed the growth of polycrystalline YIG films with phases similar to the phases of tube furnace-annealed YIG, along with a few additional X-ray diffraction peaks. Spin thermoelectric performance was also studied; we measured the spin Seebeck effects using a platinum layer to detect spin. The spin Seebeck resistivity of 224,1-nm-thick YIG films was 94,25 nm/A, comparable with the reported values for Y3Fe5O12/Silicon and Y3Fe5O12/Gd3Ga5O12 films. This suggests that our annealing process can be used to fabricate YIG films for spin thermoelectric applications.
Publisher
ELSEVIER SCIENCE SA
Issue Date
2023-06
Language
English
Article Type
Article
Citation

THIN SOLID FILMS, v.774

ISSN
0040-6090
DOI
10.1016/j.tsf.2023.139846
URI
http://hdl.handle.net/10203/306961
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0