Flattening bent Janus nanodiscs expands lattice parameters

Cited 6 time in webofscience Cited 0 time in scopus
  • Hit : 90
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorPark, Jongsikko
dc.contributor.authorKim, Hong Kiko
dc.contributor.authorPark, Jisolko
dc.contributor.authorKim, Byeongyoonko
dc.contributor.authorBaik, Hionsuckko
dc.contributor.authorBaik, Mu-Hyunko
dc.contributor.authorLee, Kwangyeolko
dc.date.accessioned2023-05-30T06:00:32Z-
dc.date.available2023-05-30T06:00:32Z-
dc.date.created2023-05-30-
dc.date.created2023-05-30-
dc.date.created2023-05-30-
dc.date.created2023-05-30-
dc.date.issued2023-04-
dc.identifier.citationCHEM, v.9, no.4, pp.947 - 962-
dc.identifier.issn2451-9294-
dc.identifier.urihttp://hdl.handle.net/10203/306954-
dc.description.abstractNanoscale lattice parameter engineering is a potentially powerful tool for tailoring the electronic properties of nanomaterials. The nascent strain in juxtaposed hetero-interfaces of nanocrystals was recently shown to substantially affect the energy states of the exposed surfaces and improve catalytic activity; however, practical implementations of this design strategy are rare. Herein, we report that Rh3S4 and Cu31S16 can be combined to produce a bent Janus -type nanodisc in which the surface strain can be controlled precisely by modulating the curvature. These nanodiscs are conveniently pre-pared by replacing copper with rhodium in Cu31S16 via anisotropic cation exchange, which induces lattice strain and bends the nano -discs. Flattening the Rh3S4/Cu31S16 nanodisc leads to a unique surface lattice structure and affords superior electrocatalytic perfor-mance in the hydrogen evolution reaction. We demonstrate a gen-eral and straightforward strategy for controlling the lattice strains in hetero-nanostructures and for systematically improving their catalytic performance.-
dc.languageEnglish-
dc.publisherCELL PRESS-
dc.titleFlattening bent Janus nanodiscs expands lattice parameters-
dc.typeArticle-
dc.identifier.wosid000983804700001-
dc.identifier.scopusid2-s2.0-85150198970-
dc.type.rimsART-
dc.citation.volume9-
dc.citation.issue4-
dc.citation.beginningpage947-
dc.citation.endingpage962-
dc.citation.publicationnameCHEM-
dc.identifier.doi10.1016/j.chempr.2022.12.004-
dc.contributor.localauthorBaik, Mu-Hyun-
dc.contributor.nonIdAuthorPark, Jongsik-
dc.contributor.nonIdAuthorKim, Hong Ki-
dc.contributor.nonIdAuthorPark, Jisol-
dc.contributor.nonIdAuthorKim, Byeongyoon-
dc.contributor.nonIdAuthorBaik, Hionsuck-
dc.contributor.nonIdAuthorLee, Kwangyeol-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorcation exchange-
dc.subject.keywordAuthorJanus structure-
dc.subject.keywordAuthorlattice parameter engineering-
dc.subject.keywordAuthormorphological transformation-
dc.subject.keywordAuthornanocrystal-
dc.subject.keywordAuthorOther-
dc.subject.keywordAuthorquantum chemical calculations-
dc.subject.keywordAuthorSDG7: Affordable and clean energy-
dc.subject.keywordAuthorsurface chemistry-
dc.subject.keywordPlusCATION-EXCHANGE-
dc.subject.keywordPlusCRYSTAL-STRUCTURE-
dc.subject.keywordPlusSTRAIN CONTROL-
dc.subject.keywordPlusSULFIDE-
dc.subject.keywordPlusPHASE-
dc.subject.keywordPlusNANOCRYSTALS-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusCOS-
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 6 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0