Machine Learning-Enabled Exploration of the Electrochemical Stability of Real-Scale Metallic Nanoparticles

Cited 6 time in webofscience Cited 0 time in scopus
  • Hit : 123
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorBang, Kihoonko
dc.contributor.authorHong, Doosunko
dc.contributor.authorPark, Youngtaeko
dc.contributor.authorKim, Donghunko
dc.contributor.authorHan, Sang Sooko
dc.contributor.authorLee, Hyuck-Moko
dc.date.accessioned2023-05-27T09:00:08Z-
dc.date.available2023-05-27T09:00:08Z-
dc.date.created2023-05-23-
dc.date.created2023-05-23-
dc.date.issued2023-05-
dc.identifier.citationNATURE COMMUNICATIONS, v.14, no.1-
dc.identifier.issn2041-1723-
dc.identifier.urihttp://hdl.handle.net/10203/306945-
dc.description.abstractSurface Pourbaix diagrams are critical to understanding the stability of nanomaterials in electrochemical environments. Their construction based on density functional theory is, however, prohibitively expensive for real-scale systems, such as several nanometer-size nanoparticles (NPs). Herein, with the aim of accelerating the accurate prediction of adsorption energies, we developed a bond-type embedded crystal graph convolutional neural network (BE-CGCNN) model in which four bonding types were treated differently. Owing to the enhanced accuracy of the bond-type embedding approach, we demonstrate the construction of reliable Pourbaix diagrams for very large-size NPs involving up to 6525 atoms (approximately 4.8 nm in diameter), which enables the exploration of electrochemical stability over various NP sizes and shapes. BE-CGCNN-based Pourbaix diagrams well reproduce the experimental observations with increasing NP size. This work suggests a method for accelerated Pourbaix diagram construction for real-scale and arbitrarily shaped NPs, which would significantly open up an avenue for electrochemical stability studies.-
dc.languageEnglish-
dc.publisherNATURE PORTFOLIO-
dc.titleMachine Learning-Enabled Exploration of the Electrochemical Stability of Real-Scale Metallic Nanoparticles-
dc.typeArticle-
dc.identifier.wosid001001080600025-
dc.identifier.scopusid2-s2.0-85160271971-
dc.type.rimsART-
dc.citation.volume14-
dc.citation.issue1-
dc.citation.publicationnameNATURE COMMUNICATIONS-
dc.identifier.doi10.1038/s41467-023-38758-1-
dc.contributor.localauthorLee, Hyuck-Mo-
dc.contributor.nonIdAuthorBang, Kihoon-
dc.contributor.nonIdAuthorHong, Doosun-
dc.contributor.nonIdAuthorPark, Youngtae-
dc.contributor.nonIdAuthorKim, Donghun-
dc.contributor.nonIdAuthorHan, Sang Soo-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusADSORBATE-ADSORBATE INTERACTIONS-
dc.subject.keywordPlusOXYGEN REDUCTION REACTION-
dc.subject.keywordPlusFUEL-CELL-
dc.subject.keywordPlusADSORPTION ENERGIES-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusCO-
dc.subject.keywordPlusELECTROCATALYSTS-
dc.subject.keywordPlusAPPROXIMATION-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 6 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0