Role of graphene quantum dots with discrete band gaps on SnO2 nanodomes for NO2 gas sensors with an ultralow detection limit

Cited 10 time in webofscience Cited 0 time in scopus
  • Hit : 304
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee, Jinhoko
dc.contributor.authorPark, Minsuko
dc.contributor.authorSong, Young Geunko
dc.contributor.authorCho, Donghwiko
dc.contributor.authorLee, Kwangjaeko
dc.contributor.authorShim, Young-Seokko
dc.contributor.authorJeon, Seokwooko
dc.date.accessioned2023-05-23T01:00:11Z-
dc.date.available2023-05-23T01:00:11Z-
dc.date.created2023-05-22-
dc.date.issued2023-05-
dc.identifier.citationNANOSCALE ADVANCES, v.5, no.10, pp.2767 - 2775-
dc.identifier.issn2516-0230-
dc.identifier.urihttp://hdl.handle.net/10203/306899-
dc.description.abstractNO2 is a major air pollutant that should be monitored due to its harmful effects on the environment and human health. Semiconducting metal oxide-based gas sensors have been widely explored owing to their superior sensitivity towards NO2, but their high operating temperature (>200 degrees C) and low selectivity still limit their practical use in sensor devices. In this study, we decorated graphene quantum dots (GQDs) with discrete band gaps onto tin oxide nanodomes (GQD@SnO2 nanodomes), enabling room temperature (RT) sensing towards 5 ppm NO2 gas with a noticeable response ((R-a/R-g) - 1 = 4.8), which cannot be matched using pristine SnO2 nanodomes. In addition, the GQD@SnO2 nanodome based gas sensor shows an extremely low detection limit of 1.1 ppb and high selectivity compared to other pollutant gases (H2S, CO, C7H8, NH3, and CH3COCH3). The oxygen functional groups in GQDs specifically enhance NO2 accessibility by increasing the adsorption energy. Strong electron transfer from SnO2 to GQDs widens the electron depletion layer at SnO2, thereby improving the gas response over a broad temperature range (RT-150 degrees C). This result provides a basic perspective for utilizing zero-dimensional GQDs in high-performance gas sensors operating over a wide range of temperatures.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.titleRole of graphene quantum dots with discrete band gaps on SnO2 nanodomes for NO2 gas sensors with an ultralow detection limit-
dc.typeArticle-
dc.identifier.wosid000978092200001-
dc.identifier.scopusid2-s2.0-85158085868-
dc.type.rimsART-
dc.citation.volume5-
dc.citation.issue10-
dc.citation.beginningpage2767-
dc.citation.endingpage2775-
dc.citation.publicationnameNANOSCALE ADVANCES-
dc.identifier.doi10.1039/d2na00925k-
dc.contributor.localauthorJeon, Seokwoo-
dc.contributor.nonIdAuthorPark, Minsu-
dc.contributor.nonIdAuthorSong, Young Geun-
dc.contributor.nonIdAuthorCho, Donghwi-
dc.contributor.nonIdAuthorLee, Kwangjae-
dc.contributor.nonIdAuthorShim, Young-Seok-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusMETAL-OXIDE NANOSTRUCTURES-
dc.subject.keywordPlusSENSING PERFORMANCE-
dc.subject.keywordPlusROOM-TEMPERATURE-
dc.subject.keywordPlusPHOTOLUMINESCENCE-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusARRAYS-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 10 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0