Transition Nonlinear Blended Aerodynamic Modeling and Anti-Harmonic Disturbance Robust Control of Fixed-Wing Tiltrotor UAV

Cited 5 time in webofscience Cited 0 time in scopus
  • Hit : 93
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLiao, Jingxianko
dc.contributor.authorBang, Hyochoongko
dc.date.accessioned2023-05-22T06:01:01Z-
dc.date.available2023-05-22T06:01:01Z-
dc.date.created2023-05-22-
dc.date.issued2023-04-
dc.identifier.citationDRONES, v.7, no.4-
dc.identifier.issn2504-446X-
dc.identifier.urihttp://hdl.handle.net/10203/306889-
dc.description.abstractThis study proposed a novel nonlinear blended aerodynamic model for the tiltrotor unmanned aerial vehicle (UAV) during the transition phase to handle the high angle-of-attack (AoA) flight, which aggregated the flat-plate mode and the linear mode of the aerodynamic coefficients. Additionally, a harmonic disturbance observer (HDO) and super-twisting sliding mode controller (STSMC) addressed the fast-changing external disturbances and attenuated the chattering problem in the original SMC. The comparative trajectory tracking results indicated that the blended aerodynamic model accurately tracks the reference signals with no tracking errors, which demonstrated a superior performance as compared to the traditional aerodynamic model, with a reduction of 2.2%, 50%, 73.6%, and 11.2% in the time required for tracking the pitch angle, pitch rate, and velocities u and w, respectively. Conversely, the traditional one exhibited significant tracking errors, ranging from 0.016 degrees in the pitch angle channel to 1.25 degrees/s in the pitch rate channel, and 0.6 m/s for velocity u and 0.01 m/s for velocity w. Moreover, the comparative control input results illustrated that the least control effort was required for the proposed HDO-STSMC control scheme with a blending function, while the original ESO-SMC experienced more oscillations and sharp amplitude changes, taking twice the time to converge, with considerable tracking errors such as 1.067 degrees in the pitch angle channel, 0.788 degrees/s in the pitch rate channel, 1.554 m/s for velocity u, and 0.746 m/s for velocity w, which verified the feasibility and superiority of the proposed HDO-STSMC with the blending function. Two performance indices revealed the robust stability and rapid convergence of the proposed transition blended aerodynamic model with the HDO-STSMC control scheme.-
dc.languageEnglish-
dc.publisherMDPI-
dc.titleTransition Nonlinear Blended Aerodynamic Modeling and Anti-Harmonic Disturbance Robust Control of Fixed-Wing Tiltrotor UAV-
dc.typeArticle-
dc.identifier.wosid000977418900001-
dc.identifier.scopusid2-s2.0-85153939784-
dc.type.rimsART-
dc.citation.volume7-
dc.citation.issue4-
dc.citation.publicationnameDRONES-
dc.identifier.doi10.3390/drones7040255-
dc.contributor.localauthorBang, Hyochoong-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorconvertible UAV-
dc.subject.keywordAuthortransition phase-
dc.subject.keywordAuthornonlinear blended aerodynamic model-
dc.subject.keywordAuthorsuper-twisting sliding mode control-
dc.subject.keywordAuthorharmonic disturbance observer-
dc.subject.keywordAuthorlongitudinal autopilot design-
dc.subject.keywordPlusOBSERVER-
dc.subject.keywordPlusDESIGN-
Appears in Collection
AE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 5 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0