Efficient DNA fluorescence labeling via base excision trapping

Cited 5 time in webofscience Cited 0 time in scopus
  • Hit : 77
  • Download : 103
Fluorescence labeling of DNAs is broadly useful, but methods for labeling are expensive and labor-intensive. Here we describe a general method for fluorescence labeling of oligonucleotides readily and cost-efficiently via base excision trapping (BETr), employing deaminated DNA bases to mark label positions, which are excised by base excision repair enzymes generating AP sites. Specially designed aminooxy-substituted rotor dyes trap the AP sites, yielding high emission intensities. BETr is orthogonal to DNA synthesis by polymerases, enabling multi-uracil incorporation into an amplicon and in situ BETr labeling without washing. BETr also enables labeling of dsDNA such as genomic DNA at a high labeling density in a single tube by use of nick translation. Use of two different deaminated bases facilitates two-color site-specific labeling. Use of a multi-labeled DNA construct as a bright fluorescence tag is demonstrated through the conjugation to an antibody for imaging proteins. Finally, double-strand selectivity of a repair enzyme is harnessed in sensitive reporting on the presence of a target DNA or RNA in a mixture with isothermal turnover and single nucleotide specificity. Overall, the results document a convenient and versatile method for general fluorescence labeling of DNAs. Methods for fluorescently labelling DNAs are expensive and labour-intensive. Here the authors report an in situ DNA labelling strategy for oligonucleotides as well as dsDNA that makes use of aldehyde-reactive rotor dyes to trap AP sites resulting from excision of deaminated DNA bases.
Publisher
NATURE PORTFOLIO
Issue Date
2022-08
Language
English
Article Type
Article
Citation

NATURE COMMUNICATIONS, v.13, no.1

ISSN
2041-1723
DOI
10.1038/s41467-022-32494-8
URI
http://hdl.handle.net/10203/306502
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
129139.pdf(1 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 5 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0