A High-Energy NASICON-Type Cathode Material for Na-Ion Batteries

Cited 126 time in webofscience Cited 0 time in scopus
  • Hit : 95
  • Download : 0
Over the last decade, Na-ion batteries have been extensively studied as low-cost alternatives to Li-ion batteries for large-scale grid storage applications; however, the development of high-energy positive electrodes remains a major challenge. Materials with a polyanionic framework, such as Na superionic conductor (NASICON)-structured cathodes with formula NaxM2(PO4)(3), have attracted considerable attention because of their stable 3D crystal structure and high operating potential. Herein, a novel NASICON-type compound, Na4MnCr(PO4)(3), is reported as a promising cathode material for Na-ion batteries that deliver a high specific capacity of 130 mAh g(-1) during discharge utilizing high-voltage Mn2+/3+ (3.5 V), Mn3+/4+ (4.0 V), and Cr3+/4+ (4.35 V) transition metal redox. In addition, Na4MnCr(PO4)(3) exhibits a high rate capability (97 mAh g(-1) at 5 C) and excellent all-temperature performance. In situ X-ray diffraction and synchrotron X-ray diffraction analyses reveal reversible structural evolution for both charge and discharge.
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2020-03
Language
English
Article Type
Article
Citation

ADVANCED ENERGY MATERIALS, v.10, no.10

ISSN
1614-6832
DOI
10.1002/aenm.201903968
URI
http://hdl.handle.net/10203/306486
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 126 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0