Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries

Cited 203 time in webofscience Cited 0 time in scopus
  • Hit : 126
  • Download : 109
DC FieldValueLanguage
dc.contributor.authorSun, H. Hohyunko
dc.contributor.authorKim, Un-Hyuckko
dc.contributor.authorPark, Jeong-Hyeonko
dc.contributor.authorPark, Sang-Wookko
dc.contributor.authorSeo, Dong-Hwako
dc.contributor.authorHeller, Adamko
dc.contributor.authorMullins, C. Buddieko
dc.contributor.authorYoon, Chong S.ko
dc.contributor.authorSun, Yang-Kookko
dc.date.accessioned2023-05-03T06:00:38Z-
dc.date.available2023-05-03T06:00:38Z-
dc.date.created2023-05-03-
dc.date.created2023-05-03-
dc.date.created2023-05-03-
dc.date.issued2021-11-
dc.identifier.citationNATURE COMMUNICATIONS, v.12, no.1-
dc.identifier.issn2041-1723-
dc.identifier.urihttp://hdl.handle.net/10203/306482-
dc.description.abstractLong-term efficient cycling stability is of paramount importance for the development of high-energy Li-ion batteries. Here, the authors investigate the effect of transition metal dopants on the electrochemical, morphological, and structural properties of Ni-rich cathode active materials. Doping is a well-known strategy to enhance the electrochemical energy storage performance of layered cathode materials. Many studies on various dopants have been reported; however, a general relationship between the dopants and their effect on the stability of the positive electrode upon prolonged cell cycling has yet to be established. Here, we explore the impact of the oxidation states of various dopants (i.e., Mg2+, Al3+, Ti4+, Ta5+, and Mo6+) on the electrochemical, morphological, and structural properties of a Ni-rich cathode material (i.e., Li[Ni0.91Co0.09]O-2). Galvanostatic cycling measurements in pouch-type Li-ion full cells show that cathodes featuring dopants with high oxidation states significantly outperform their undoped counterparts and the dopants with low oxidation states. In particular, Li-ion pouch cells with Ta5+- and Mo6+-doped Li[Ni0.91Co0.09]O-2 cathodes retain about 81.5% of their initial specific capacity after 3000 cycles at 200 mA g(-1). Furthermore, physicochemical measurements and analyses suggest substantial differences in the grain geometries and crystal lattice structures of the various cathode materials, which contribute to their widely different battery performances and correlate with the oxidation states of their dopants.-
dc.languageEnglish-
dc.publisherNATURE PORTFOLIO-
dc.titleTransition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries-
dc.typeArticle-
dc.identifier.wosid000718060500012-
dc.identifier.scopusid2-s2.0-85118986048-
dc.type.rimsART-
dc.citation.volume12-
dc.citation.issue1-
dc.citation.publicationnameNATURE COMMUNICATIONS-
dc.identifier.doi10.1038/s41467-021-26815-6-
dc.contributor.localauthorSeo, Dong-Hwa-
dc.contributor.nonIdAuthorSun, H. Hohyun-
dc.contributor.nonIdAuthorKim, Un-Hyuck-
dc.contributor.nonIdAuthorPark, Jeong-Hyeon-
dc.contributor.nonIdAuthorPark, Sang-Wook-
dc.contributor.nonIdAuthorHeller, Adam-
dc.contributor.nonIdAuthorMullins, C. Buddie-
dc.contributor.nonIdAuthorYoon, Chong S.-
dc.contributor.nonIdAuthorSun, Yang-Kook-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordPlusSTRUCTURAL STABILITY-
dc.subject.keywordPlusELECTROCHEMICAL PROPERTIES-
dc.subject.keywordPlusSUPEREXCHANGE INTERACTION-
dc.subject.keywordPlusENERGY-DENSITY-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusLINIO2-
dc.subject.keywordPlusR(3)OVER-BAR-M-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusPHASE-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
129085.pdf(6.24 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 203 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0