A multi-modal pre-training transformer for universal transfer learning in metal-organic frameworks

Cited 32 time in webofscience Cited 0 time in scopus
  • Hit : 166
  • Download : 0
Metal-organic frameworks (MOFs) are a class of crystalline porous materials that exhibit a vast chemical space owing to their tunable molecular building blocks with diverse topologies. An unlimited number of MOFs can, in principle, be synthesized. Machine learning approaches can help to explore this vast chemical space by identifying optimal candidates with desired properties from structure-property relationships. Here we introduce MOFTransformer, a multi-modal Transformer encoder pre-trained with 1 million hypothetical MOFs. This multi-modal model utilizes integrated atom-based graph and energy-grid embeddings to capture both local and global features of MOFs, respectively. By fine-tuning the pre-trained model with small datasets ranging from 5,000 to 20,000 MOFs, our model achieves state-of-the-art results for predicting across various properties including gas adsorption, diffusion, electronic properties, and even text-mined data. Beyond its universal transfer learning capabilities, MOFTransformer generates chemical insights by analyzing feature importance through attention scores within the self-attention layers. As such, this model can serve as a platform for other MOF researchers that seek to develop new machine learning models for their work. Metal-organic frameworks are of high interest for a range of energy and environmental applications due to their stable gas storage properties. A new machine learning approach based on a pre-trained multi-modal transformer can be fine-tuned with small datasets to predict structure-property relationships and design new metal-organic frameworks for a range of specific tasks.
Publisher
NATURE PORTFOLIO
Issue Date
2023-03
Language
English
Article Type
Article
Citation

NATURE MACHINE INTELLIGENCE, v.5, no.3, pp.309 - 318

ISSN
2522-5839
DOI
10.1038/s42256-023-00628-2
URI
http://hdl.handle.net/10203/306023
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 32 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0