InfoGCN: Representation Learning for Human Skeleton-based Action Recognition

Cited 70 time in webofscience Cited 0 time in scopus
  • Hit : 401
  • Download : 0
Human skeleton-based action recognition offers a valuable means to understand the intricacies of human behavior because it can handle the complex relationships between physical constraints and intention. Although several studies have focused on encoding a skeleton, less attention has been paid to embed this information into the latent representations of human action. InfoGCN proposes a learning framework for action recognition combining a novel learning objective and an encoding method. First, we design an information bottleneck-based learning objective to guide the model to learn informative but compact latent representations. To provide discriminative information for classifying action, we introduce attention-based graph convolution that captures the context-dependent intrinsic topology of human action. In addition, we present a multi-modal representation of the skeleton using the relative position of joints, designed to provide complementary spatial information for joints. InfoGCN(1) surpasses the known state-of-the-art on multiple skeleton-based action recognition benchmarks with the accuracy of 93.0% on NTU RGB+D 60 cross-subject split, 89.8% on NTU RGB+D 120 cross-subject split, and 97.0% on NW-UCLA.
Publisher
IEEE COMPUTER SOC
Issue Date
2022-06
Language
English
Citation

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.20154 - 20164

ISSN
1063-6919
DOI
10.1109/CVPR52688.2022.01955
URI
http://hdl.handle.net/10203/305637
Appears in Collection
BiS-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 70 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0