Strong, Chemically Stable, and Enzymatically On-Demand Detachable Hydrogel Adhesion Using Protein Crosslink

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 123
  • Download : 0
Achieving strong adhesion between hydrogels and diverse materials is greatly significant for emerging technologies yet remains challenging. Existing methods using non-covalent bonds have limited pH and ion stability, while those using covalent bonds typically lack on-demand detachment capability, limiting their applications. In this study, a general strategy of covalent bond-based and detachable adhesion by incorporating amine-rich proteins in various hydrogels and inducing the interfacial crosslinking of the hydrogels using a protein-crosslinking agent is demonstrated. The protein crosslink offers topological adhesion and can reach a strong adhesion energy of approximate to 750 J m(-2). The chemistry of the adhesion is characterized and that the inclusion of proteins inside the hydrogels does not alter the hydrogels' properties is shown. The adhesion remains intact after treating the adhered hydrogels with various pH solutions and ions, even at an elevated temperature. The detachment is triggered by treating proteinase solution at the bonding front, causing the digestion of proteins, thus breaking up the interfacial crosslink network. In addition, that this approach can be used to adhere hydrogels to diverse dry surfaces, including glass, elastomers and plastics, is shown. The stable chemistry of protein crosslinks opens the door for various applications in a wide range of chemical environments.
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2023-02
Language
English
Article Type
Article
Citation

MACROMOLECULAR RAPID COMMUNICATIONS, v.44, no.4

ISSN
1022-1336
DOI
10.1002/marc.202200750
URI
http://hdl.handle.net/10203/305489
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0