Remote park-and-ride network equilibrium model and its applications

Cited 61 time in webofscience Cited 0 time in scopus
  • Hit : 85
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLiu, Zhiyuanko
dc.contributor.authorChen, Xinyuanko
dc.contributor.authorMeng, Qiangko
dc.contributor.authorKim, Inhiko
dc.date.accessioned2023-01-28T02:01:05Z-
dc.date.available2023-01-28T02:01:05Z-
dc.date.created2023-01-28-
dc.date.created2023-01-28-
dc.date.issued2018-11-
dc.identifier.citationTRANSPORTATION RESEARCH PART B-METHODOLOGICAL, v.117, pp.37 - 62-
dc.identifier.issn0191-2615-
dc.identifier.urihttp://hdl.handle.net/10203/304743-
dc.description.abstractExisting park-and-ride (P&R) sites are usually located near a train/bus station where construction and operation costs are considerably high. Thus, this paper proposes a new P&R service mode, "Remote P&R (RPR)", where the car park locates in a suburban area with lower land value. Dedicated express bus service is used to connect this site and a nearby train station. To quantitatively evaluate the impacts of RPR on the network flows, a combined modal split and traffic assignment model (CMSTA) is developed, where a cross-nested logit (CNL) model is adopted to cope with the mode similarity. The problem is formulated as a convex programming model and solved by the Evans algorithm, and then extended to asymmetric path-based cases, where a variational inequality (VI) model is built and solved by a self-adaptive gradient projection (SAGP) algorithm. Taking the CMSTA as the lower level and multimodal stochastic system optimum (MSSO) as the objective, we further develop a mathematical programming model with equilibrium constraints (MPEC) for the optimal network design of RPR. Based on an origin-based reformulation of the MPEC model, an exact solution method based on the nonlinear valid inequalities (NVI) is applied. Numerical examples demonstrate that the RPR services can significantly influence network users' travel decisions, promote the usage of public transportation and mitigate traffic congestion in the congested area of metropolitan cities. (C) 2018 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.titleRemote park-and-ride network equilibrium model and its applications-
dc.typeArticle-
dc.identifier.wosid000455559600003-
dc.identifier.scopusid2-s2.0-85052952444-
dc.type.rimsART-
dc.citation.volume117-
dc.citation.beginningpage37-
dc.citation.endingpage62-
dc.citation.publicationnameTRANSPORTATION RESEARCH PART B-METHODOLOGICAL-
dc.identifier.doi10.1016/j.trb.2018.08.004-
dc.contributor.localauthorKim, Inhi-
dc.contributor.nonIdAuthorLiu, Zhiyuan-
dc.contributor.nonIdAuthorChen, Xinyuan-
dc.contributor.nonIdAuthorMeng, Qiang-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorRemote park-and-ride-
dc.subject.keywordAuthorCross-nested logit-
dc.subject.keywordAuthorCombined modal split and traffic assignment-
dc.subject.keywordAuthorMultimodal network design-
dc.subject.keywordPlusPOLYAK PROJECTION METHOD-
dc.subject.keywordPlusLINEAR MONOCENTRIC CITY-
dc.subject.keywordPlusTRIP DISTRIBUTION-
dc.subject.keywordPlusASSIGNMENT MODEL-
dc.subject.keywordPlusMODAL SPLIT-
dc.subject.keywordPlusRELIABILITY-
dc.subject.keywordPlusFACILITIES-
dc.subject.keywordPlusSERVICES-
Appears in Collection
GT-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 61 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0