An Energy-Efficient Domain-Specific Reconfigurable Array Processor With Heterogeneous PEs for Wearable Brain-Computer Interface SoCs

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 96
  • Download : 0
Recently, there is increasing demand for energy-efficient signal processing in wearable visual-stimuli-based brain-computer interface (V-BCI) devices. For the better accuracy and the reduced latency of the V-BCI system, the target identification (TI) algorithm that analyzes brain signals is being advanced, and the importance of an energy-efficient accelerating chip that processes various linear algebra operations constituting the TI algorithms is growing. In this paper, we propose a domain-specific reconfigurable array processor (RAP) with a dynamically reconfigurable and scalable array including 5-heterogeneous processing elements (PEs) for the energy-efficient acceleration of basic linear algebra subprograms (BLAS) and matrix decompositions. The system-on-chip (SoC), including the proposed RAP, was fabricated in 130-nm CMOS technology with an area of 16.87-mm(2) and measured at 1.0 V 90 MHz. The RAP achieved an information transfer rate (ITR) of 139.9-bits/min and a TI accuracy of 95.4% on a fabricated chip through an optimized TI algorithm and scalable array processing. In addition, the RAP has 16.8x higher TI energy efficiency than prior work and achieved an energy efficiency of 2144.2-bits/min/mW for information transfer processing rate with the proposed TI algorithm. The RAP supports a greater variety of linear algebra operations and data sizes with hardware reconfiguration than the prior accelerators.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2022-12
Language
English
Article Type
Article
Citation

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, v.69, no.12, pp.4872 - 4885

ISSN
1549-8328
DOI
10.1109/TCSI.2022.3197186
URI
http://hdl.handle.net/10203/304499
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0