Role of Bicontinuous Structure in Elastomeric Electrolytes for High-Energy Solid-State Lithium-Metal Batteries

Cited 30 time in webofscience Cited 0 time in scopus
  • Hit : 104
  • Download : 0
Solid-state lithium (Li)-metal batteries (LMBs) are garnering attention as a next-generation battery technology that can surpass conventional Li-ion batteries in terms of energy density and operational safety under the condition that the issue of uncontrolled Li dendrite is resolved. In this study, various plastic crystal-embedded elastomer electrolytes (PCEEs) are investigated with different phase-separated structures, prepared by systematically adjusting the volume ratio of the phases, to elucidate the structure-property-electrochemical performance relationship of the PCEE in the LMBs. At an optimal volume ratio of elastomer phase to plastic-crystal phase (i.e., 1:1), bicontinuous-structured PCEE, consisting of efficient ion-conducting, plastic-crystal pathways with long-range connectivity within a crosslinked elastomer matrix, exhibits exceptionally high ionic conductivity (≈10−3 S cm−1) at 20 °C and excellent mechanical resilience (elongation at break ≈ 300%). A full cell featuring this optimized PCEE, a 35 µm thick Li anode, and a high loading LiNi0.83Mn0.06Co0.11O2 (NMC-83) cathode delivers a high energy density of 437 Wh kganode+cathode+electrolyte−1. The established structure–property–electrochemical performance relationship of the PCEE for solid-state LMBs is expected to inform the development of the elastomeric electrolytes for various electrochemical energy systems. © 2022 Wiley-VCH GmbH.
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2023-01
Language
English
Article Type
Article
Citation

ADVANCED MATERIALS, v.35, no.1

ISSN
0935-9648
DOI
10.1002/adma.202205194
URI
http://hdl.handle.net/10203/304296
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 30 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0