Direct Observation of Atomic-Scale Gliding on Hydrophilic Surfaces

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 127
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorGo, Tae Wonko
dc.contributor.authorLee, Hyunsooko
dc.contributor.authorLee, Hyunhwako
dc.contributor.authorSong, Hee Chanko
dc.contributor.authorPark, Jeong Youngko
dc.date.accessioned2022-12-19T03:02:26Z-
dc.date.available2022-12-19T03:02:26Z-
dc.date.created2022-08-01-
dc.date.created2022-08-01-
dc.date.issued2022-07-
dc.identifier.citationJOURNAL OF PHYSICAL CHEMISTRY LETTERS, v.13, no.29, pp.6612 - 6618-
dc.identifier.issn1948-7185-
dc.identifier.urihttp://hdl.handle.net/10203/303179-
dc.description.abstractNanoscale friction behavior on hydrophilic surfaces (HS), influenced by a probe gliding on a confined water layer, has been investigated with friction force microscopy under various relative humidity (RH) conditions. The topographical and frictional responses of the mechanically exfoliated single-layer graphene (SLG) on native-oxide-covered silicon (SiO2/Si) and mica were both influenced by RH conditions. The ordinary phenomena at ambient conditions (i.e., higher friction on a HS than on a SLG due to different hydrophilicity), nondistinguishable height, friction of SLG with SiO2/Si at high RH (> 98%), and the superlubricating behavior of friction on a HS were observed. Furthermore, the subdomain within SLG, consisting of an ice-like water layer intercalated between SLG and SiO2/Si, showed friction enhancement. These results suggest that the abundant water molecules at the interface of the probe and a HS can make a slippery surface that overcomes capillary and viscosity effects through the gliding motion of the probe.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleDirect Observation of Atomic-Scale Gliding on Hydrophilic Surfaces-
dc.typeArticle-
dc.identifier.wosid000830035600001-
dc.identifier.scopusid2-s2.0-85135382632-
dc.type.rimsART-
dc.citation.volume13-
dc.citation.issue29-
dc.citation.beginningpage6612-
dc.citation.endingpage6618-
dc.citation.publicationnameJOURNAL OF PHYSICAL CHEMISTRY LETTERS-
dc.identifier.doi10.1021/acs.jpclett.2c01895-
dc.contributor.localauthorPark, Jeong Young-
dc.contributor.nonIdAuthorLee, Hyunsoo-
dc.contributor.nonIdAuthorLee, Hyunhwa-
dc.contributor.nonIdAuthorSong, Hee Chan-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusNANOSCALE FRICTION-
dc.subject.keywordPlusCAPILLARY CONDENSATION-
dc.subject.keywordPlusFORCE-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusCALIBRATION-
dc.subject.keywordPlusADSORPTION-
dc.subject.keywordPlusMONOLAYER-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusSILICON-
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0