Quantum Dot/Polymer Bulk Heterostructure Interlayer for Enhanced Charge Collection in AgBiS2 Quantum Dot Photovoltaics

Cited 8 time in webofscience Cited 0 time in scopus
  • Hit : 153
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorPark, Youngsangko
dc.contributor.authorKim, Hyoinko
dc.contributor.authorShin, Daekwonko
dc.contributor.authorKim, Taewanko
dc.contributor.authorChoi, Mahnminko
dc.contributor.authorKim, Jugyoungko
dc.contributor.authorLee, Doh Changko
dc.contributor.authorJeong, Soheeko
dc.date.accessioned2022-12-14T02:00:28Z-
dc.date.available2022-12-14T02:00:28Z-
dc.date.created2022-09-19-
dc.date.created2022-09-19-
dc.date.created2022-09-19-
dc.date.issued2022-12-
dc.identifier.citationADVANCED OPTICAL MATERIALS, v.10, no.23-
dc.identifier.issn2195-1071-
dc.identifier.urihttp://hdl.handle.net/10203/302962-
dc.description.abstractRemarkable progress over the past decade in photovoltaics using solution-processed nanomaterials as light absorbers has placed colloidal quantum dot (CQD)-based devices on the map. As such, AgBiS2 CQDs have garnered significant attention as materials exhibiting a high absorptivity with environmentally benign alternatives to Pb-chalcogenide or Pb halide perovskite-CQDs. Yet, AgBiS2 CQD-based solar cells have gravely underperformed compared to Pb-containing devices, particularly in the metrics of charge carrier extraction from the AgBiS2 absorber, hence its relative mediocrity. To specifically address the extraction efficiency, a bulk heterostructure (QPB) interlayer at the CQD/polymer interface in AgBiS2 CQD solar cells, resulting in an increase of the power conversion efficiency (PCE), e.g., from 5.10% (an average PCE of 4.94 +/- 0.11%) to 6.78% (an average PCE of 6.59 +/- 0.11%) is deviced. The improved charge extraction at the hole-collecting interface is responsible for the superior performance, corroborated by high photocurrent (21.5 mA cm(-2)) and fill factor (67%). The QPB-interlayered solar cell also gives rise to outstanding durability of the devices, retaining above 95% of the original PCE for 5 months in ambient air. Our strategy based on an eco-friendly CQD/polymer could provide an effective route for next-generation optoelectronics with enhanced charge collection and durability.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleQuantum Dot/Polymer Bulk Heterostructure Interlayer for Enhanced Charge Collection in AgBiS2 Quantum Dot Photovoltaics-
dc.typeArticle-
dc.identifier.wosid000850646800001-
dc.identifier.scopusid2-s2.0-85137510887-
dc.type.rimsART-
dc.citation.volume10-
dc.citation.issue23-
dc.citation.publicationnameADVANCED OPTICAL MATERIALS-
dc.identifier.doi10.1002/adom.202201086-
dc.contributor.localauthorLee, Doh Chang-
dc.contributor.nonIdAuthorKim, Hyoin-
dc.contributor.nonIdAuthorShin, Daekwon-
dc.contributor.nonIdAuthorKim, Taewan-
dc.contributor.nonIdAuthorChoi, Mahnmin-
dc.contributor.nonIdAuthorKim, Jugyoung-
dc.contributor.nonIdAuthorJeong, Sohee-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorAgBiS-
dc.subject.keywordAuthor(2) quantum dots-
dc.subject.keywordAuthoreco-friendly-
dc.subject.keywordAuthororganic inorganic hybrid photovoltaics-
dc.subject.keywordAuthordevice stability-
dc.subject.keywordPlusHYBRID SOLAR-CELLS-
dc.subject.keywordPlusINTERFACE RECOMBINATION-
dc.subject.keywordPlusCOLLOIDAL SYNTHESIS-
dc.subject.keywordPlusNANOCRYSTALS-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusFILMS-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 8 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0