Deep neural network-based structural health monitoring technique for real-time crack detection and localization using strain gauge sensors

Cited 7 time in webofscience Cited 0 time in scopus
  • Hit : 230
  • Download : 0
Structural health monitoring (SHM) techniques often require a large number of sensors to evaluate and monitor the structural health. In this paper, we propose a deep neural network (DNN)-based SHM method for accurate crack detection and localization in real time using a small number of strain gauge sensors and confirm its feasibility based on experimental data. The proposed method combines a DNN model with principal component analysis (PCA) to predict the strain field based on the local strains measured by strain gauge sensors located rather sparsely. We demonstrate the potential of the proposed technique via a cyclic 4-point bending test performed on a composite material specimen without cracks and seven specimens with different lengths of cracks. A dataset containing local strains measured with 12 strain gauge sensors and strain field measured with a digital image correlation (DIC) device was prepared. The strain field dataset from DIC is converted to a smaller dimension latent space with a few eigen basis via PCA, and a DNN model is trained to predict principal component values of each image with 12 strain gauge sensor measurements as input. The proposed method turns out to accurately predict the strain field for all specimens considered in the study.
Publisher
NATURE PORTFOLIO
Issue Date
2022-11
Language
English
Article Type
Article
Citation

SCIENTIFIC REPORTS, v.12, no.1

ISSN
2045-2322
DOI
10.1038/s41598-022-24269-4
URI
http://hdl.handle.net/10203/301060
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 7 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0