NeuroScaler: neural video enhancement at scale

Cited 11 time in webofscience Cited 0 time in scopus
  • Hit : 84
  • Download : 0
High-definition live streaming has experienced tremendous growth. However, the video quality of live video is often limited by the streamer's uplink bandwidth. Recently, neural-enhanced live streaming has shown great promise in enhancing the video quality by running neural super-resolution at the ingest server. Despite its benefit, it is too expensive to be deployed at scale. To overcome the limitation, we present NeuroScaler, a framework that delivers efficient and scalable neural enhancement for live streams. First, to accelerate end-To-end neural enhancement, we propose novel algorithms that significantly reduce the overhead of video super-resolution, encoding, and GPU context switching. Second, to maximize the overall quality gain, we devise a resource scheduler that considers the unique characteristics of the neural-enhancing workload. Our evaluation on a public cloud shows NeuroScaler reduces the overall cost by 22.3× and 3.0-11.1× compared to the latest per-frame and selective neural-enhancing systems, respectively.
Publisher
Association for Computing Machinery, Inc
Issue Date
2022-08-26
Language
English
Citation

2022 Conference of the ACM Special Interest Group on Data Communication, SIGCOMM 2022, pp.795 - 811

DOI
10.1145/3544216.3544218
URI
http://hdl.handle.net/10203/300903
Appears in Collection
EE-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 11 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0