Nanostructured Multilayer Coatings for Spatial Filtering

Cited 11 time in webofscience Cited 0 time in scopus
  • Hit : 342
  • Download : 0
Spatial filtering is an important mechanism to improve the spatial quality of laser beams. Typically, a confocal arrangement of lenses with a diaphragm in the focal plane is used for intracavity spatial filtering. Such conventional filtering requires access to the far-field domain. In microlasers, however, conventional filtering is impossible due to the lack of space in microresonators to access the far-field. Therefore, a novel concept for more compact and efficient spatial filtering is necessary. In this study, a conceptually novel mechanism of spatial filtering in the near-field domain is proposed and demonstrated, by a nanostructured multilayer coating-a 2D photonic crystal structure with a periodic index modulation along the longitudinal and transverse directions to the beam propagation. The structure is built on a nanomodulated substrate, to provide the transverse periodicity. The physical vapor deposition is used to provide self-repeating modulation in the longitudinal direction. A 5 mu m thick photonic multilayer structure composed of nanostructured multiple layers of alternating high- and low-index materials providing spatial filtering in the near-infrared frequencies with 2 degrees low angle passband is experimentally demonstrated. The proposed photonic structure can be considered as an ideal component for intracavity spatial filtering in microlasers.
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2021-05
Language
English
Article Type
Article
Citation

ADVANCED OPTICAL MATERIALS, v.9, no.9

ISSN
2195-1071
DOI
10.1002/adom.202001730
URI
http://hdl.handle.net/10203/300852
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 11 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0