Reduced-order modeling via proper generalized decomposition for uncertainty quantification of frequency response functions

Cited 5 time in webofscience Cited 0 time in scopus
  • Hit : 133
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee, Gil -Yongko
dc.contributor.authorPark, K. C.ko
dc.contributor.authorPark, Yong-Hwako
dc.date.accessioned2022-11-14T06:01:34Z-
dc.date.available2022-11-14T06:01:34Z-
dc.date.created2022-11-14-
dc.date.created2022-11-14-
dc.date.created2022-11-14-
dc.date.issued2022-11-
dc.identifier.citationCOMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, v.401-
dc.identifier.issn0045-7825-
dc.identifier.urihttp://hdl.handle.net/10203/299572-
dc.description.abstractThis paper presents a new reduced-order modeling methodology for frequency response analysis of linear dynamical systems with parametric uncertainty. The proposed framework consists of offline and online stages in the computation process. The offline stage introduces a variant of proper generalization decomposition (PGD), which approximates the solution of the full -order model (FOM) as a low-rank separated representation. A key feature of the proposed PGD is the collocation representation equipped with the Dirac-delta function, which handles non-smooth characteristics of frequency responses point-wisely. This strategy replaces direct computations of FOM on a large number of samples and frequencies with iterative solving of the subproblems formulated by the progressive Galerkin approach. In the online stage, the PGD modes acquired from the offline stage are used to generate a reduced-order model (ROM). Solutions for unsampled points are evaluated through ROM, which is further utilized to estimate the statistics of the frequency response function. Numerical examples demonstrate that the proposed methodology accelerates computational efficiency while maintaining accuracy over the frequency range including resonance.(c) 2022 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE SA-
dc.titleReduced-order modeling via proper generalized decomposition for uncertainty quantification of frequency response functions-
dc.typeArticle-
dc.identifier.wosid000875711500003-
dc.identifier.scopusid2-s2.0-85139065968-
dc.type.rimsART-
dc.citation.volume401-
dc.citation.publicationnameCOMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING-
dc.identifier.doi10.1016/j.cma.2022.115643-
dc.contributor.localauthorPark, Yong-Hwa-
dc.contributor.nonIdAuthorPark, K. C.-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorUncertainty quantification-
dc.subject.keywordAuthorFrequency response analysis-
dc.subject.keywordAuthorReduced-order modeling-
dc.subject.keywordAuthorProper generalized decomposition-
dc.subject.keywordPlusFINITE-ELEMENT-ANALYSIS-
dc.subject.keywordPlusEQUATIONS-
dc.subject.keywordPlusDRIVEN-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 5 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0