Quantum-classical reinforcement learning for decoding noisy classical parity information

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 111
  • Download : 0
Learning a hidden parity function from noisy data, known as learning parity with noise (LPN), is an example of intelligent behavior that aims to generalize a concept based on noisy examples. The solution to LPN immediately leads to decoding a random binary linear code in the presence of classification noise. This problem is thought to be intractable classically, but can be solved efficiently if a quantum oracle can be queried. However, in practice, a learner is likely to obtain classical data. In this work, we show that a naive application of the quantum LPN algorithm to classical data encoded in an equal superposition state requires an exponential sample complexity. We then propose a quantum-classical reinforcement learning algorithm to solve the LPN problem for classical data and demonstrate a significant reduction in the sample complexity compared with the naive approach. Simulations with a hidden bit string of length up to 12 show that the quantum-classical reinforcement learning performs better than known classical algorithms when the sample complexity, run time, and robustness to classical noise are collectively considered. Our algorithm is robust to any noise in the quantum circuit that effectively appears as Pauli errors on the final state.
Publisher
SPRINGERNATURE
Issue Date
2020-06
Language
English
Article Type
Article
Citation

QUANTUM MACHINE INTELLIGENCE, v.2, no.1

ISSN
2524-4906
DOI
10.1007/s42484-020-00019-5
URI
http://hdl.handle.net/10203/299484
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0