Dedicated strategies for triboson signals from cascade decays of vector resonances

Cited 14 time in webofscience Cited 0 time in scopus
  • Hit : 251
  • Download : 0
New colorless electroweak (EW) charged spin-1 particles with mass of a few TeV arise in numerous extensions of the standard model (SM). Decays of such a vector into a pair of SM particles, either fermions or EW bosons, are well studied. Many of these models have an additional scalar, which can lead to (and even dominate in certain parameter regions) a novel decay channel for the heavy vector particles instead- into a SM EW boson and the scalar, which subsequently decays into a SM EW boson pair. In this work, we focus on the scalar being relatively heavy, roughly a factor of 2 lighter than the vector particles, rendering its decay products well separated. Such a cascade decay results in a fmal state with three isolated bosons. We argue that for this "triboson" signal the existing diboson searches are not quite optimal due to combinatorial ambiguity for three identical bosons, and in addition, due to a relatively small signal cross section determined by the heaviness of the decaying vector particle. In order to isolate the signal, we demonstrate that tagging all three bosons, followed by use of the full triboson invariant mass distribution as well as that of appropriate subsets of dibosons, is well motivated. We develop these general strategies in detail within the context of a specific class of models that are based on extensions of the standard warped extradimensional scenario. We also point out that a similar analysis would apply to models with an enlarged LW gauge sector in four dimensions, even if they involve a different Lorentz structure for the relevant couplings.
Publisher
AMER PHYSICAL SOC
Issue Date
2019-04
Language
English
Article Type
Article
Citation

PHYSICAL REVIEW D, v.99, no.7

ISSN
2470-0010
DOI
10.1103/PhysRevD.99.075016
URI
http://hdl.handle.net/10203/299066
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 14 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0