A sustained high-temperature fusion plasma regime facilitated by fast ions

Cited 35 time in webofscience Cited 0 time in scopus
  • Hit : 506
  • Download : 0
Nuclear fusion is one of the most attractive alternatives to carbon-dependent energy sources(1). Harnessing energy from nuclear fusion in a large reactor scale, however, still presents many scientific challenges despite the many years of research and steady advances in magnetic confinement approaches. State-of-the-art magnetic fusion devices cannot yet achieve a sustainable fusion performance, which requires a high temperature above 100 million kelvin and sufficient control of instabilities to ensure steady-state operation on the order of tens of seconds(2,3). Here we report experiments at the Korea Superconducting Tokamak Advanced Research(4) device producing a plasma fusion regime that satisfies most of the above requirements: thanks to abundant fast ions stabilizing the core plasma turbulence, we generate plasmas at a temperature of 100 million kelvin lasting up to 20 seconds without plasma edge instabilities or impurity accumulation. A low plasma density combined with a moderate input power for operation is key to establishing this regime by preserving a high fraction of fast ions. This regime is rarely subject to disruption and can be sustained reliably even without a sophisticated control, and thus represents a promising path towards commercial fusion reactors.
Publisher
NATURE PORTFOLIO
Issue Date
2022-09
Language
English
Article Type
Article
Citation

NATURE, v.609, no.7926, pp.269 - 275

ISSN
0028-0836
DOI
10.1038/s41586-022-05008-1
URI
http://hdl.handle.net/10203/298796
Appears in Collection
NE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 35 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0