Broadband second-harmonic phase-matching in dispersion engineered slot waveguides

Cited 14 time in webofscience Cited 0 time in scopus
  • Hit : 90
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKim, Sangsikko
dc.contributor.authorQi, Minghaoko
dc.date.accessioned2022-09-14T08:00:57Z-
dc.date.available2022-09-14T08:00:57Z-
dc.date.created2022-09-14-
dc.date.issued2016-01-
dc.identifier.citationOPTICS EXPRESS, v.24, no.2, pp.773 - 786-
dc.identifier.issn1094-4087-
dc.identifier.urihttp://hdl.handle.net/10203/298523-
dc.description.abstractParametric optical nonlinearities are usually weak and require both high optical field intensity and phase-matching. Micro/nanophotonics, with strong confinement of light in waveguides of nanometer-scale cross-sections, can provide high field intensity, but is still in need of a solution for phase-matching across a broad bandwidth. In this article, we show that mode-coupling in slot waveguides can engineer the waveguide modal dispersion, and with proper choice of materials, can achieve on-chip broadband second-harmonic phase-matching. A phase-matching bandwidth in the range of 220 nm at mid-infrared can occur for a hetero-slot waveguide consisting of aluminum nitride (AlN) and silicon nitride (SiN). With a high-nonlinearity polymer as cladding material, about 1.76 W(-1)cm(-2) of normalized conversion efficiency in second-harmonic-generation (SHG) and about 23 dB signal gain in degenerate optical parametric amplification (DOPA) can be achieved over a broad bandwidth. An asymmetric-slot waveguide configuration and a thermal tuning scheme are proposed to reduce the fabrication difficulty. This concept of broadband second-harmonic phase-matching can be extended to other nonlinear optical frequency mixing processes, thus expanding the scope of on-chip nonlinear optical applications. (C) 2016 Optical Society of America-
dc.languageEnglish-
dc.publisherOPTICAL SOC AMER-
dc.titleBroadband second-harmonic phase-matching in dispersion engineered slot waveguides-
dc.typeArticle-
dc.identifier.wosid000369066300045-
dc.identifier.scopusid2-s2.0-84961718323-
dc.type.rimsART-
dc.citation.volume24-
dc.citation.issue2-
dc.citation.beginningpage773-
dc.citation.endingpage786-
dc.citation.publicationnameOPTICS EXPRESS-
dc.identifier.doi10.1364/OE.24.000773-
dc.contributor.localauthorKim, Sangsik-
dc.contributor.nonIdAuthorQi, Minghao-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusSILICON-
dc.subject.keywordPlusGENERATION-
dc.subject.keywordPlusLIGHT-
dc.subject.keywordPlusCONVERSION-
dc.subject.keywordPlus2ND-ORDER-
dc.subject.keywordPlusEMISSION-
dc.subject.keywordPlusGREEN-
dc.subject.keywordPlusINDEX-
dc.subject.keywordPlusPUMP-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 14 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0