Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators

Cited 99 time in webofscience Cited 0 time in scopus
  • Hit : 185
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKim, Sangsikko
dc.contributor.authorHan, Kyunghunko
dc.contributor.authorWang, Congko
dc.contributor.authorJaramillo-Villegas, Jose A.ko
dc.contributor.authorXue, Xiaoxiaoko
dc.contributor.authorBao, Chengyingko
dc.contributor.authorXuan, Yiko
dc.contributor.authorLeaird, Daniel E.ko
dc.contributor.authorWeiner, Andrew M.ko
dc.contributor.authorQi, Minghaoko
dc.date.accessioned2022-09-14T08:00:46Z-
dc.date.available2022-09-14T08:00:46Z-
dc.date.created2022-09-14-
dc.date.created2022-09-14-
dc.date.issued2017-08-
dc.identifier.citationNATURE COMMUNICATIONS, v.8-
dc.identifier.issn2041-1723-
dc.identifier.urihttp://hdl.handle.net/10203/298520-
dc.description.abstractKerr nonlinearity-based frequency combs and solitons have been generated from on-chip microresonators. The initiation of the combs requires global or local anomalous dispersion which leads to many limitations, such as material choice, film thickness, and spectral ranges where combs can be generated, as well as fabrication challenges. Using a concentric racetrack-shaped resonator, we show that such constraints can be lifted and resonator dispersion can be engineered to be anomalous over moderately broad bandwidth. We demonstrate anomalous dispersion in a 300 nm thick silicon nitride film, suitable for semiconductor manufacturing but previously thought to result in waveguides with high normal dispersion. Together with a mode-selective, tapered coupling scheme, we generate coherent mode-locked frequency combs. Our method can realize anomalous dispersion for resonators at almost any wavelength and simultaneously achieve material and process compatibility with semiconductor manufacturing.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.titleDispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators-
dc.typeArticle-
dc.identifier.wosid000408547200003-
dc.identifier.scopusid2-s2.0-85028463480-
dc.type.rimsART-
dc.citation.volume8-
dc.citation.publicationnameNATURE COMMUNICATIONS-
dc.identifier.doi10.1038/s41467-017-00491-x-
dc.contributor.localauthorKim, Sangsik-
dc.contributor.nonIdAuthorHan, Kyunghun-
dc.contributor.nonIdAuthorWang, Cong-
dc.contributor.nonIdAuthorJaramillo-Villegas, Jose A.-
dc.contributor.nonIdAuthorXue, Xiaoxiao-
dc.contributor.nonIdAuthorBao, Chengying-
dc.contributor.nonIdAuthorXuan, Yi-
dc.contributor.nonIdAuthorLeaird, Daniel E.-
dc.contributor.nonIdAuthorWeiner, Andrew M.-
dc.contributor.nonIdAuthorQi, Minghao-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusORDER MODE SUPPRESSION-
dc.subject.keywordPlusMONOLITHIC MICRORESONATOR-
dc.subject.keywordPlusSOLITON REGIME-
dc.subject.keywordPlusNORMAL GVD-
dc.subject.keywordPlusCHIP-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 99 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0